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Abstract genes, biomolecules, cells, organs, organisms, popula-
tions, communities, ecosystems, socio-ecosystems, and
biogeoclimatic systems, with a particular focus on French
tropical overseas. We discuss research pathways to
address knowledge gaps in various scientific disciplines,
covering genetics (genomics, transcriptomics, pro-
teomics, metabolomics), morphology, ethology, bio-
acoustics, demography, functional ecology,
macro-ecology, landscape ecology, human and social sci-
ences, bioclimatology, and their cross-disciplinary inter-
actions. Based on contributions from coral reef experts
Synopsis working in different coral reef regions around the world,
This chapter provides a holistic vision of coral reef biodiversity across our synthesis supports a better understanding of the vari-

les of biological an logical organization, from genes an . . T .
vast scales of biological and ecological organization, from genes and ous dimensions of coral reef biodiversity and proposes
molecules to ecosystems and their geoclimatic and social environ-

Coral reefs are sanctuaries for a large portion of our plan-
et’s biodiversity, but their rapid decline begs critical ques-
tions about what exactly is being lost, what driving forces
determine decline or resilience, and what implications for
life on Earth. To help address these questions, this chapter
synthesizes the state of knowledge on the diversity of
coral reef life forms at different scales of biological and
ecological organization, encompassing variability in

ments. We compare biodiversity metrics among key ecological com- future research orientations for improving knowledge and
munities and regions as we synthesize the current state of knowledge on conservation. Given the rapid disappearance of coral reefs
coral reef biodiversity, pinpoint important knowledge gaps, and identify and how much is still unknown, this chapter underscores

prospective research.
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the urgency of cross-scale biodiversity assessments for a
systemic understanding of the distribution and dynamics
of biodiversity.
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10.1 Introduction

10.1.1 Coral Reefs in the Twenty-First Century

Coral reefs are arguably the most biodiverse and productive
ecosystems on Earth (Fig. 10.1). They host an estimated 38%
of all marine species (Fisher et al. 2015) and contribute fun-
damental benefits to humanity and the natural world Moberg
and Folke 1999; Speers et al. 2016 Woodhead et al. 2019;
Carlot et al. 2023) despite making up a mere 0.08% of the
ocean floor (Smith 1978), or 0.17% including associated
lagoonal habitats (Spalding et al. 2001), and lying in tropical
waters that are poor in nutrients (de Goeij et al. 2013).
However, coral reefs are declining due to the high vulnera-
bility of several of their ecologically key functional groups to
human-driven and climatic stressors (Brandl et al. 2019a;
IPBES 2019; Calvin et al. 2023). In particular, unsustainable
rapid growth in coastal development, pollution, fishing, and
climate change are increasingly reducing the regeneration of
reef habitats by their slow-growing foundational species, the
calcifying corals, and altering the capacity of the food webs
to preserve their functional equilibrium (Fig. 10.2; Vajed
Samiei et al. 2015; Hoegh-Guldberg et al. 2017; Hughes
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Fig. 10.1 Coral reef contributions in terms of surface area and species
diversity, based on total species number estimates according to Mora
et al. (2011) and Fisher et al. (2015)
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10 Snapshots of Coral Reef Biodiversity

Fig. 10.2 Key ecological
communities of coral reef
ecosystems and associated
seagrass and algae beds,
mangrove forests, and sandy
lagoonal plains. The
communities are organized in
a trophic pyramid, with
species occupying distinct
ecological niches and
contributing a set of
ecological functions that
enable ecosystem
functionality in a state of
relative stability.
Environmental stressors alter
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et al. 2018; Quattrini et al. 2020; Ouédraogo et al. 2021,
2023; Andrello et al. 2022). In many places, eutrophication
and overfishing have reduced the capacity of herbivores to
control algae communities, leading to major ecosystem
shifts (Hughes et al. 2017; Schmitt et al. 2019). The wide-
spread decline of coral reefs and consequently of the benefits
they provide to society has made coral reef conservation a
societal priority in many regions and a major target for
humanity globally (IPBES 2019; Maxwell et al. 2020; Eddy
et al. 2021). Within these efforts and in the larger scope of
knowledge and conservation of the Earth’s biodiversity, it is
fundamental to comprehend the extent to which coral reefs
contribute to biodiversity, biodiversity distribution in rela-
tion to coral reef conditions and human influences, and the
consequences of coral reef decline for marine life and
humanity. To begin, what exactly is coral reef biodiversity?

10.1.2 What Is Biodiversity?

Biodiversity is defined as the variability of life forms.
Despite the simplicity of the concept, biodiversity remains
a major scientific mystery, as variability of life is found at
a multitude of biological and ecological scales, from the
very small to the very large (Fig. 10.3). In longer terms, as
defined by Article 2 of the Convention on Biological
Diversity (www.cbd.int): “biological diversity means the
variability among living organisms from all sources includ-
ing, inter alia, terrestrial, marine and other aquatic ecosys-
tems and the ecological complexes of which they are part;
this includes diversity within species, between species and
of ecosystems.” In fact, variability of life is characterized
in as many dimensions as there are metrics to assess,
resulting in a plethora of biodiversity measurements and
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disciplinary sub-definitions. While this fractal nature of
biodiversity measurements has complexified interdisci-
plinary interactions, biodiversity assessments remain
largely incomplete, as most existing metrics have not yet
reached a final estimate and biodiversity metrics continue
to increase with the development of new scientific tools
and disciplines (Caley et al. 2014; Guerra et al. 2020;
Galand et al. 2023. Overall, a global evaluation of Earth’s
biodiversity is necessary for a better understanding of the
organization of life on our planet and the consequences of
the biological losses it suffers (Costello et al. 2013; IPBES
2019; Bradshaw et al. 2021). As sanctuaries for a large
portion of marine biodiversity, coral reefs are a good place
to begin this endeavor.

10.1.3 Objectives of the Chapter

Using contributions from a team of coral reef experts work-
ing in different coral reef ecoregions around the world, we
compile information from various scientific disciplines of
biology and environmental sciences to synthesize knowledge
on major metrics of coral reef biodiversity at different scales
of biological (i.e., relating to organisms) and ecological
organization (i.e., relating to interactions among organisms
and with their environments), from genes to ecosystems and
their natural and human-associated environments (Fig. 10.3).
We evaluate differences among key coral reef biological
communities and geographical regions, identify major
knowledge gaps, and discuss prospective research. Our syn-
thesis provides an understanding of the various dimensions
in which coral reef biodiversity takes form and highlights
future research for improving our knowledge of nature and
its preservation.
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Fig. 10.3 Hierarchical organization of the living, from genes to bio-
geoclimatic systems, from which biodiversity is the result of variabili-
ties at the different scales. Text indicates the different scales of

10.2 Methods

We have leveraged the coral reef expertise of the French
Laboratory of Excellence LabEx CORAIL network across
12 French tropical overseas localities situated in the
Caribbean, Indian, and Pacific regions (Fig. 10.4). This rep-
resents ~5% of the world’s constructed hard-substrate reefs,
~9% of all coral reef surface area when including associated
sandy lagoonal habitats, and encompasses 46° of latitude
(18°N-28°S) and all major coral reef basins (Smith 1978;
Spalding et al. 2001; Andréfouét et al. 2008).

We characterize coral reef biodiversity at the different
scales of biological and ecological organization, from genes
to biogeoclimatic systems, by compiling quantitative metrics
from the various scientific disciplines (Fig. 10.3) for differ-
ent coral reef biological communities and regions (Fig. 10.4).
Our focus is on major biological groups considered as key
ecological compartments of coral reef ecosystems, including
reef-building corals and other sessile animals (soft-corals,
sponges, ascidians, bryozoans), micro- and macroalgae, vag-
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ile invertebrates (crustaceans, mollusks, echinoderms, anne-
lids, platyhelminthes, sipunculid worms, hemichordates),
fish (actinopterygians, elasmobranchii), megafauna (sea tur-
tles, dugongs, dolphins, whales, sharks and rays, sea snakes),
bacteria, and viruses (Fig. 10.2). Data on seagrasses, man-
groves, and sandy lagoonal plains are also integrated as adja-
cent ecosystems with species distributions that often overlap
with coral reef habitats (Moberg and Folke 1999; Andréfouét
et al. 2008; Guannel et al. 2016). Environmental data con-
sists of metrics characterizing the geologic, climatic, and
societal aspects of the coral reef systems.

Biodiversity data is gathered thanks to the contribution of
experts from various disciplines and regions, complemented
with data obtained from literature and global databases.
Particular attention has been given to the most documented
and commonly used biodiversity metrics, and those viewed
as essential biodiversity variables (https://geobon.org/ebvs/;
Pereira et al. 2013). Experts have also been asked to identify
major knowledge gaps and prospective research to address
them.
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All maps and graphics have been produced using the R
software environment (R v4.2.3, R Core Team 2023) com-
plemented with the “ade4,” “stringr,” “ggplot2,” “png,”
“RcolorBrewer,” and “Cowplot” packages. Graphics are
complemented with iconography from https://ian.umces.edu
and https://biorender.com.

10.3 Results and Discussion

10.3.1 On the Challenge of Assessing Coral
Reef Biodiversity

Quantifying biodiversity is a daunting exercise given the
colossal task of considering the various scales of biological
and ecological organization through the lenses of different
scientific tools and disciplines (Fig. 10.3), particularly as
most are in their infancy and none have achieved a finite esti-
mate of biodiversity (Costello et al. 2013; Caley et al. 2014;
Guerra et al. 2020; Galand et al. 2023). Nevertheless, estimat-
ing biodiversity is a necessity for humanity when rapid biodi-
versity loss is a global reality with irrevocable consequences
for life on Earth (Kayal et al. 2019; IPBES 2019; Calvin et al.
2023). Due to their central role in hosting a large portion of
the world’s biodiversity and their vulnerability to collapse,
coral reefs are certainly a good focus point for this endeavor.
The following sections synthesize coral reef biodiversity
based on a multitude of metrics that characterize variability of
coral reef systems at various biological and ecological scales,
providing a snapshot of the work in progress.

10.3.2 Genes

Unknown until recent times, the birth of molecular biology
in the 1950s opened paths to a fascinating new vision of how
biological features are controlled by inheritable biological
units, otherwise known as genes, organized in long sequences
of deoxyribonucleic acid, or DNA (Gayon 2016). This reve-
lation confirmed early work by Mendel (1865) on biological
inheritance. Since, genetic investigation has been in constant
acceleration, with the development of new tools and tech-
niques providing means to deepen our exploration of bio-
logical diversity at the level of genomes. Despite significant
increases in the number of studies in recent years, the genetic
exploration of coral reef ecosystems remains in its infancy.
Genomic resources have been developed for some model
species within different ecological communities (Fig. 10.5),
providing various metrics for measuring genetic diversity
within and among taxa, including length, composition, and
organization of coding and noncoding sequences (Fig. 10.6)
and their degree of similarity between different evolutionary
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paths (Fig. 10.7). These metrics can be accessed at the DNA
and RNA levels, the latter also providing functional informa-
tion in the form of gene expression data (transcriptomics).
Such studies are particularly relevant to ecological investiga-
tions of species responses to environmental changes and
other forms of selective pressure (Gingeras 2007; Fuller
et al. 2020; Nielsen et al. 2020; Levy et al. 2021).

Increasing availability of genetic data has enabled explor-
ing genetic variation at the population and meta-population
levels (e.g., heterozygosity, parentage analysis, introgres-
sion, demographic connectivity) and across species distribu-
tion ranges (i.e., phylogeography) in key organisms of
ecological or scientific importance. This also contributes
ecological knowledge regarding population connectivity and
regeneration capacity, and species origination and dispersal,
therefore supporting biodiversity conservation (Baums 2008;
Cowman and Bellwood 2013; Edmunds et al. 2016; Siqueira
et al. 2019; Dubé et al. 2020; Swain et al. 2021; Cantalice
et al. 2022). Exploring both the spatial and temporal nature
of genetic variation is paramount to identifying genetic
diversity hotspots and the mechanisms underlying adapta-
tion to changing environments, a field that necessitates fur-
ther investigation (Fig. 10.5). New approaches combining
genetic exploration with descriptors of environmental condi-
tion and biodiversity at larger scales of bioecological organi-
zation will help in this endeavor (Nielsen et al. 2020; Selmoni
et al. 2020; Manel et al. 2020; Bongaerts et al. 2021).

By enabling species identification based on short signa-
ture sequences, barcoding data represents the prevalent and
accessible form of genetic resource, particularly useful for
accessing hidden communities such as bacteria, viruses,
symbionts, and cryptic organisms using environmental-DNA
(eDNA) approaches (Robbins et al. 2021; Galand et al.
2023). GenBank (www.ncbi.nlm.nih.gov/genbank/) is the
main public repository of genetic data in the public sphere
(Leray et al. 2019), though project-specific datasets are also
available. Recent decreases in the cost of sequencing have
led to a sharp increase in shallow genomic surveys. Low-
coverage DNA sequencing provides access to complete
organellar genomes as these small molecules are often pres-
ent in several thousands of copies compared to the larger
nuclear genomes present as a single copy per cell.
Mitochondrial DNA (mtDNA) data is a favorite molecular
tool for the study of species diversity in animals (e.g.,
Shinzato et al. 2021), whereas chloroplast DNA (cpDNA)
data is preferably used in plants and algae, mainly owing to
differing rates of sequence evolution in these organisms. In
addition to sequence data, complete organelle genomes pro-
vide morphological characters in the form of genome organi-
zation and molecular conformation, providing insights into
genetic expression (Fig. 10.7; Kayal et al. 2012a, b, 2015a, b;
Lavrov and Pett 2016).
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The taxonomic diversity of coral reefs makes them ideal
laboratories for exploring evolutionary patterns in living
organisms. Taxonomic comparisons indicate a high level of
diversity in genome size, composition, and structural organi-
zation, with no apparent relationship between genome com-
plexities and species evolutionary positions (Fig. 10.6),
although similarity between genetic sequences decreases
with increasing evolutionary distance (Ciccarelli et al. 2006).
However, genetic characterization of several branches of the

and mitochondrial (b, from Lavrov and Pett 2016) genome size among

tree of life, including major animal clades such as Porifera,
Bryozoa, and Platyhelminthes, remains scarce even in bar-
code libraries (Mugnai et al. 2021). Such paucity of genetic
information is typical of marine, compared to land, ecosys-
tems, impeding large-scale comparisons of genetic and
genomic diversity among coral reefs (Fig. 10.5). Cross-
regional initiatives such as the recent Tara Pacific campaigns
contribute greatly to remedy such shortcomings (Planes and
Allemand 2023).
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10.3.3 Biomolecules

Coral reefs are host to a high diversity of molecular com-
pounds, most of which are still uncharacterized, released by
their myriad of local inhabitants. MarinLit (https://marinlit.
rsc.org) is a major database that documents the diversity of
biomolecules of marine origin with medicinal and engineer-
ing potentials. Among the ~25,000 marine natural products
registered in this database in 2019, a large proportion origi-
nates from reef-associated organisms, particularly sponges
(33%) and cnidarians (28%) (Fig. 10.8; Carroll et al. 2019).
These numbers increase rapidly, with ~1400 new marine bio-
molecules being described each year, a majority (888 in
2021) originating from tropical regions and sponges and cni-
darians (37% in 2021; Carroll et al. 2023). This natural
wealth is of particular interest to biopharmaceutical and bio-
tech industries using the bioactive chemicals as cytotoxic,
anticancer, pain relief, and antifouling products (Ghareeb
et al. 2020; Gomez-Banderas 2022; Wegley Kelly et al.
2022). Research in this field benefits from the attention of
active industries and international groups and is likely to
uncover many more potential uses as screening of coral reef
compounds for natural products continues, notably on less
emblematic and cryptic organisms that remain
understudied.

By investigating proteins and other small molecules pres-
ent in organisms and their environments, proteomic and
metabolomic approaches provide an additional layer of com-
plexity to molecular biodiversity exploration (Jiang et al.
2021). While regulation of macroalgae is failing on many
reefs due to eutrophication and declines in herbivory (Hughes
et al. 2017), exploitation of macroalgae can provide a large
source for biomaterials and constitute a win-win for humans
and ecosystems alike in a time when the sustainable exploi-
tation of ocean resources (i.e., blue economy) is in full
expansion (Urban Jr and Ittekkot 2022). Indeed, coral reef
macroalgae offer a huge and attractive potential for develop-
ing new drugs and biomaterials, an area that is expected to
increase with the development of macroalgal farms, espe-
cially in French tropical overseas (Stiger-Pouvreau and
Zubia 2020).

10.3.4 Cells

Variability in cell organization is a major feature of evolu-
tionary biology, with the acquisition of cellular membranes
and organelles being determinant in the development and
diversification of life Lopez-Garcia and Moreira 2023). The
large diversity in cell structure and organization found in
coral reefs reflects that of taxonomic groups from various
portions of the phylogenetic tree, ranging from the most
basic virus and simpler prokaryotic cells to the most com-
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posite cells endowed with complex membranes and organ-
elles acquired through symbiotic associations (Fig. 10.9a).
The evolution of multicellularity has enabled cell specializa-
tion and the development of organs, leading to a diversifica-
tion of cell features and functions within organisms
(Fig. 10.9b). For instance, one species of reef-building coral
harbors 40 different cell types throughout its life cycle (Levy
et al. 2021). Such cell diversification confers niche extension
and competitive advantage to organisms, influencing biodi-
versity patterns at higher levels of bioecological organization
(population, community).

Cell diversity can reach its paroxysm in symbiotic (paired
living beings) and holobiontic (multiple living beings func-
tioning as a unit) organisms, such as reef-building corals
finding mutual benefits between heterotrophy in animals and
autotrophy in plants to colonize oligotrophic waters
(Fig. 10.9b; Jiang et al. 2021). Physiological studies on coral
reef species have specifically focused on key metabolic func-
tions, such as respiration, photosynthesis, and calcification,
to assess species performances under various environmental
conditions, providing insights into their capacity to survive
future reef conditions (Vajed Samiei et al. 2015; Hoegh-
Guldberg et al. 2017; Andrello et al. 2022). Recent develop-
ment in genomics, transcriptomics, and proteomics methods
enables the exploration of new cell types and functions, pro-
viding further insights into the physiological functioning of
cells and organisms (Konopka and Wilkins 2012; Levy et al.
2021). New approaches in meta-“omics” (e.g., meta-
genomics, meta-transcriptomics, meta-proteomics) applied
through the lens of the holobiont concept shed light on the
hidden functional and cellular diversity of complex marine
ecosystems. In fact, marine holobionts are an emerging field
of research that shows promising outcomes for our under-
standing of coral reefs and other ecosystems (Dittami et al.
2021). For instance, monitoring of marine holobionts can
provide clues into environmental stressors while providing
explanatory mechanisms for adaptation to changing climate
(Gonzalez-Pech et al. 2023). Such knowledge can in turn be
used in hierarchical, multi-scale quantitative approaches to
bridge the gap to higher bioecological levels such as popula-
tions, communities, and ecosystems (Edmunds et al. 2014;
Smallegange et al. 2017; Condie et al. 2018; Dubois et al.
2019; Carturan et al. 2020; Morais and Bellwood 2020).

10.3.5 Organs

The diversity of organ shapes and functions was a foundation
for Charles Darwin’s work on species evolution (Darwin
1859). Work in this realm has paid particular attention to the
diversity of key functional organs and transmission of their
characters throughout evolutionary pathways, including
locomotion, sensory, communication, and reproductive
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organs, although often without a specific focus on coral reef
species Cernuda-Cernuda and Garcia-Ferndndez 1996
Maruska 2001 Gregory 2008, Flammang 2014Fine and
Parmentier 2015 Majoris et al. 2021. More focused are stud-
ies on species biological traits, which typically rely on organ-
ism- and organ-level characteristics for species identification
and ecological comparisons (Fig. 10.10). Such information
is recorded in reference databases such as https://coraltraits.
org and www.fishbase.se. While analyses of organ variabili-
ties are scarce, the most common metrics are found for
organs used for ecological investigation such as fish otoliths
and scales, mineral bodies of the inner ear and surface layer

Z
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Corallite width (um)
Parrotfish

1989). (b) Variability in the size of reef-building coral corallites. (c)
Mouth specialization in herbivorous surgeonfish and microphage par-
rotfish. (Data from www.fishbase.se and McWilliam et al. (2018))

that are used for sclerochronologic estimations of organism
age, and ontologic investigations of diet and life-cycle
dynamics (Heather et al. 2018; Morat et al. 2020). Recent
advancements in this realm show a similar use of the verte-
brate eye lens to explore dietary and spatial variations
throughout organisms’ lifetime (Quaeck-Davies et al. 2018),
an area of exploration also investigated in human dental
cementum (Bertrand et al. 2022). Similar investigations are
performed on marine plants and invertebrates, although
using a different set of organs (Duarte et al. 1994; Rypel
et al. 2008; Ouréns et al. 2013). In coral reefs, special atten-
tion has been given to the diversity of organs associated with
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key ecological functions for ecosystem health, such as the
role of parrotfishes whose beaks specialize in particular in
scraping algae with cyanobacteria, microorganisms, and
invertebrate endosymbionts off substrates as compared to the
mouths of surgeonfishes more adapted to grazing
(Fig. 10.10c; Clements et al. 2017). Physiological and phylo-
genetic studies investigate the efficiency of such functions
and their ecological role in coral reefs, with particular
emphasis on the importance of diversity and redundancy of
the functions associated with such organs for ecosystem
resilience (Guillemot et al. 2011; Siqueira et al. 2019;
Pimiento et al. 2020; Robinson et al. 2020).

10.3.6 Organisms

Organisms living in coral reefs vary in many aspects, includ-
ing in their morphometric sizes and shapes (Fig. 10.11), and
biological traits of colors and behaviors, resulting in a level
of diversity and curiosity of life-forms that is unique to these
ecosystems. Global databases describing these characteris-
tics for reef-building corals and fish include https://coral-
traits.org and www.fishbase.se.

Variability in the size of organisms relates to differences
in species biological traits and also to characteristics intrin-
sic to individuals (e.g., age) and extrinsic features of their
environments (e.g., temperature, food availability).
Variability in size is often used as an ecological indicator of
species health in given environments, given that body size is
easier to measure than age, and is the result of a variety of
past demographic processes, such as survival and growth,
that are sensitive to environmental conditions, including nat-
ural disturbance and human stressors. Body size is also a
good descriptor of current species performance capacities in
demographic processes that determine the ecological success
of populations into the future (Darling et al. 2012; Kayal
et al. 2015b; Morais and Bellwood 2020), although other
ecological descriptors such as age also play an important role
(Rapuano et al. 2023). Typically, the largest individuals are
found in the most suitable and less disturbed environments,
reflecting species optimal environmental niches and success
in ecosystem management (McCook et al. 2010; Cinner
et al. 2018; Dietzel et al. 2020).

Body shape is often used for species identification and
taxonomic studies on species diversification (Veron 2000;
Ramirez-Portilla et al. 2022; Tea et al. 2022), sometimes in
relation to species performances in key ecological processes
such as fish swimming capacity or wave resistance and light
absorption in corals, and the associated energetics
(Fig. 10.11a, b; Walker et al. 2013; Madin et al. 2014; Rossi
et al. 2018; Cresswell et al. 2020; Kramer et al. 2022; Carlot
et al. 2023). A large body of work is particularly dedicated to
relating the weight of individual organisms to their body
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length for estimations of population biomass, species stock
assessments, and ecosystem productivity (Wolfe et al. 2020;
Pacey et al. 2023; Tekwa et al. 2023). Using a large sample
size of 53,800 specimens from 788 reef species from New
Caledonia, Kulbicki et al. (2005) estimated variability in reef
fish length-weight relationships to be 9.4% at the species
level, 11.4% at the genus level, 13.5% at the family level, and
13.2% within morphological groups (Fig. 10.12b). Based on
their analysis of reef fish morphologies, the authors con-
cluded that diversity in fish shapes is constrained by physical
limits. There are a dozen major morphological groups in cor-
als and 30 of reef fishes (Fig. 10.11; Veron 2000; Kulbicki
et al. 2005). Another major research path focuses on species
ecological functions, notably for habitat-forming organisms
like corals whose morphologies determine the abundance
and diversity of species hosted in their interstices (Darling
et al. 2017; Richardson et al. 2017b; Aston et al. 2022).

Diversity in colors is one of the most striking and unique
features of (healthy) coral reefs, investigated predominantly
in studies on ecosystem health and aesthetics values (Haas
et al. 2015; Langlois et al. 2022). Other studies explore the
evolutionary and molecular determinants leading to the
diversity of colors found on coral reefs, sometimes in rela-
tion to jewelry industries, and how some species use colors
for communication and camouflage (Marshall 2000; Lemer
et al. 2015; Tea et al. 2022). Sometimes, striking colors are
indicative of stress, as observed during coral bleaching
events (Bollati et al. 2020). However, the mechanisms
behind, and consequences of, diversity in colors remain
largely to be explored (Hemingson et al. 2019; Hodge et al.
2020).

Relatively little knowledge is available about the behav-
iors of individual organisms, how they adapt to local envi-
ronments, and change with human influences. Most studies
focus on species of interest for their ecological or societal
role. A relatively large portion of studies on marine organism
behavior focus on large and charismatic animals which are
easier to track and are often a center of touristic attraction
and, in particular sharks which can also cause human casual-
ties (Juhel et al. 2019; Taglioni et al. 2019; Lassauce et al.
2020; Maillaud et al. 2022; Riley et al. 2022; Séguigne et al.
2023). The studies also explore habitat use, feeding and mat-
ing behaviors, and social interactions of the organisms
(Papastamatiou et al. 2006; Mourier et al. 2012; Mourier
et al. 2013; Mourier et al. 2016; Guillaume and Séret 2021;
Lassauce et al. 2022; Lassauce et al. 2023), as well as behav-
ioral sensitivity to human stressors (Holles et al. 2013; Gil
et al. 2020; Clark et al. 2020; Udyawer et al. 2021). Another
center of interest has been the coral predatory seastar, crown-
of-thorns starfish (Acanthaster spp.), whose population out-
breaks are major causes of coral mortality throughout the
Indo-Pacific (Pratchett et al. 2014). The studies have particu-
larly focused on movement and feeding behaviors of the sea-
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star as key drivers of coral decline De’ath and Moran 1998;
Pratchett 2001; Kayal et al. 2011, 2012b, 2017a, b; Petie
et al. 2016; Pratchett et al. 2020) and the identification of its
natural predators, which can help mitigate the outbreaks
(Bos et al. 2008; Cowan et al. 2017; Kayal and Lenihan
2025), recently with the help of DNA technology (Kroon
et al. 2020). Other studies investigated predator-prey, com-
petitive, and mutualistic behavior in different reef organisms
(Pratchett 2005; Mills and Co6té 2010; Leray et al. 2013;
Kayal et al. 2017a; Kayal and Adjeroud 2022). Facing wide-
spread coral reef decline, a large body of work on species
behaviors is dedicated to finding solutions for mitigating
ecosystem vulnerability to disturbance or boosting recovery
through active restoration (Kayal et al. 2011; McKeon and
Moore 2014; Kayal and Kayal 2017; Gordon et al. 2019).
Sometimes, original studies emerge from unplanned, oppor-
tunistic observations of species unusual behaviors, such as
bleached corals compensating energy loss by feeding on
neighboring macroalgae, and more recently on internal sym-
biotic microalgae, potentially leading to new investigation
channels (Marhaver 2011; Wiedenmann et al. 2023). While
the level of plasticity of species behaviors in the face of envi-
ronmental changes remains largely unquantified, the devel-
opment and democratization of imagery tools such as
underwater cameras and drones have greatly increased
research capacity in this realm by enabling increased obser-
vations of organisms in their natural environments (Cleguer
et al. 2021; Heudier et al. 2023). Further developments in
artificial intelligence enable more effective analysis of eco-
system imagery and acoustic recordings for characterizing
species attributes and behaviors under various natural and
human conditions (Gonzalez-Rivero et al. 2020; Jamil et al.
2021; Ditria et al. 2022; Ouassine et al. 2024).

10.3.7 Populations

Population abundance estimates are commonly used for
stock assessments and evaluations of ecosystem health.
Common metrics include population size and distribution
range, density, biomass, percent-cover, and size-structure
(Fig. 10.13; Adjeroud et al. 2018a, b; Dietzel et al. 2020,
2021; Pacey et al. 2023; Tekwa et al. 2023). In coral reefs as
in other ecosystems, many species are often observed at pop-
ulation abundances and size-structures that are near their
lower bound (Figs. 10.11c and 10.13), while knowledge on
ultimate demographic states achievable by populations and
the maximum carrying capacity of ecosystems remains lim-
ited (Levin 2000). Nevertheless, comparisons between
healthy and altered ecosystem states provide insights on near
optimal population abundance, distribution, and size-
structure, and the degree of reduction imposed by various
stressors (McCook et al. 2010; Cinner et al. 2018; Darling
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et al. 2019; Morais et al. 2021). Amidst rapid environmental
change, key research questions focus on population resil-
ience and the capacity of species to maintain their abundance
through the demographic processes of survival, growth,
reproduction, and migration (Darling et al. 2012; Mumby
et al. 2014; Kayal et al. 2015b; Morais and Bellwood 2020).
Global databases with information on these processes
include  https://coraltraits.org  and  www.fishbase.se.
Demographic investigations use empirical measurements of
species performances in these processes (Fig. 10.14) to eval-
uate the diversity of life-history strategies and identify,
through quantitative models, the mechanisms leading to pop-
ulation bottlenecks and species ecological success and coex-
istence in various environments (Madin et al. 2014; Bozec
et al. 2016; Kayal et al. 2018; Riegl et al. 2018; Darling et al.
2019; Carturan et al. 2020). While such investigations
depend on fine-scale empirical data on species dynamics,
data hitherto limited to few highly studied coral reef sites,
current developments in imagery approaches are opening
paths to their democratization (Gonzdlez-Rivero et al. 2020;
Collin et al. 2021; Jamil et al. 2021; Heudier et al. 2023;
Kayal et al. 2023). Increased data availability along with
amplified computer power has opened paths to pluridisci-
plinary quantitative investigations for a better understanding
of ecosystem processes across biological, ecological, and
biogeoclimatic scales (Jones et al. 2015; Condie et al. 2021;
Van Woesik et al. 2022; Carlot et al. 2023; Donovan et al.
2023).

As an alternative to comprehensive approaches designed
to integrating a multitude of ecological processes driving
species dynamics, other investigation routes focus on single
indicator processes serving as ecological metrics of species
performance and resiliency such as recruitment rates, com-
petitive wars, or recovery capacities (Done et al. 2010; Penin
et al. 2010; Osborne et al. 2017; Vercelloni et al. 2019; Kayal
and Adjeroud 2022). In particular, coral recruitment is a
commonly used, integrated indicator of coral reef resilience
capacity, as reflecting both adult coral abundance and repro-
ductive success, and larval dispersal, settlement, and meta-
morphosis into reef habitats (Adjeroud et al. 2017). It is
monitored in different regions using a standardized method
quantifying annual settlement rates of coral larvae on artifi-
cial substrates (Mundy 2000). Regional comparisons of coral
recruitment rates indicate differences in magnitude, taxo-
nomic composition, and seasonality, with maxima observed
at mid-latitudinal range in the southwest Pacific, central
Great Barrier Reef and southern New Caledonia, where coral
communities are dominated by spawning acroporids, with a
shift to brooding pocilloporids and spawning poritids in
other places (Fig. 10.14e; Hughes et al. 2002a, b; Adjeroud
et al. 2017). Quantitative understanding of the coral recruit-
ment process is still nascent but increasing, thanks to dedi-
cated scientific attention (Hughes et al. 2000; Kayal et al.
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2015b; Bramanti and Edmunds 2016; Doropoulos et al.
2016; Leinbach et al. 2021; Doropoulos et al. 2022). The rise
of genetic tools and oceanographic modeling of currents
enable estimations of population connectivity in various
coral reef species, which exhibit various larval durations and
dispersal capabilities (Fig. 10.15; Lester and Ruttenberg
2005; Shanks 2009; Cuif et al. 2014; Cravatte et al. 2015;
Edmunds et al. 2016; Hock et al. 2017; Dubé et al. 2020;
Lesturgie et al. 2023). Overall, a variety of approaches are
deployed to investigate the importance of larval recruitment
in the replenishment of coral reef species populations and
ecosystem functioning, with direct benefits to biodiversity
management and spatial conservation planning (Kayal et al.
2018; Riegl et al. 2018; Brandl et al. 2019b; Manel et al.
2019).

10.3.8 Communities

The number of different species composing a biological
community is the most historical and common metric of bio-
diversity (historically “biological diversity”’; Harris 1916).
Studies at this scale of observation can be distinguished into
two major groups, those focused on taxonomic diversity with
the end goal of characterizing community composition and
those with an ecological endeavor evaluating changes in
community composition and their consequences for
ecosystems.

Coral reefs are estimated to host over 2 billion species,
including ~830,000 (confidence interval 550,000-1,300,000)
multicellular taxa, that is, ~38% of all described marine spe-
cies (Fig. 10.16; Fisher et al. 2015). Taxonomic work is
active in describing new species. Yet large uncertainties sur-
round existing taxonomic delineations in many groups
including corals, and species classifications evolve rapidly,
particularly through the use of genomics, and many species
names are expected to change over time (e.g., Benzoni et al.
2010; Huang et al. 2014a, b; Nakajima et al. 2017; Tea et al.
2022). Up-to-date taxonomic reference databases, such as
TAXREF from the Inventaire National du Patrimoine Naturel
(INPN, https://inpn.mnhn.fr, Gargominy et al. 2022) and the
World Register of Marine Species (WoRMS, www.marine-
species.org) are essential for ensuring coherence in species
designations. Current descriptions distinguish 1681 species
of hard corals including 995 associated with coral reefs,
19,772 fish, 55,238 crustaceans, 50,877 mollusks, and 3760
hydrozoans (see Fig. 10.16a, b for all groups). Overall, spe-
cies descriptions and therefore biodiversity estimates are
more complete for large species in shallow habitats such as
megafauna which are easier to observe and tend to decrease
for smaller and more cryptic habitats and species, including
sponges, although genetic meta-barcoding and bioacoustic
approaches increasingly enable detection (Elise et al. 2019;
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Nichols et al. 2022; Wolfe et al. 2023; Galand et al. 2023).
Biogeographic studies on species distributions assess spatial
variations in species diversity and the mechanisms behind
speciation and extinctions (Cowman and Bellwood 2013;
Clements et al. 2017; Tea et al. 2022; Cantalice et al. 2022).
Regional comparisons identify a pronounced gradient in spe-
cies diversity with the spatial extent of coral reef systems
(Bellwood et al. 2005) as well as their geographic distance to
the center of marine biodiversity situated in Southeast Asia
(Hughes et al. 2002a; Dietzel et al. 2021; Lutzenkirchen
et al. 2023) and to the equator (Jones et al. 2019), features
that are reflected across French overseas (Figs. 10.17, 10.18
and 10.19). These patterns concord with our general under-
standing that the level of biodiversity of a system is a func-
tion of the extent and diversity of ecological niches available,
which relates to spatial as well as temporal heterogeneity
(e.g., increased seasonality at higher latitudes promoting
species coexistence through competitive reversals; Logan
1984; Kayal and Adjeroud 2022), and the variety of organ-
isms able to occupy these niches. Nevertheless, current esti-
mates of species richness should be considered with caution
for certain species groups, since estimation methods and
sampling efforts may differ among regions and result in
potential bias (e.g., differences in coral diversity estimates in
Fig. 10.16c). For instance, both molecular and morphologi-
cal approaches are used to assess species diversity, which
often results in contrasting outcomes, and a recent
extrapolation-based study accounting for sampling effort
suggests that coral diversity may in fact be higher in the
western Indian ocean than in the coral triangle (Kusumoto
et al. 2020). Overall, how species richness and other biodi-
versity metrics vary with spatial scales or other units of sam-
pling effort remains poorly understood (Nash et al. 2014;
Chase et al. 2018; Donovan et al. 2023).

A large body of work exists on using the dynamics of key
communities of ecological or social importance, such as cor-
als and fish, to assess coral reef ecosystem health and associ-
ated management strategies (Lamy et al. 2016; Kayal et al.
2018; Adjeroud et al. 2018a; Vercelloni et al. 2019; Carturan
et al. 2020; Graham et al. 2020). Some studies investigate
more specifically the ecological functions associated with
different communities, such as primary production, herbiv-
ory, nutrient transport and recycling, and habitat formation
or alteration (Brandl et al. 2019a; Pimiento et al. 2020), and
the ecological processes through which changes in one
community spread to other ecosystem components (Leray
et al. 2012; Kayal et al. 2012b; Condie et al. 2018; Dubois
et al. 2019). Nevertheless, the complexity of biotic interac-
tions, including predator-prey, competition versus mutual-
ism, symbiosis versus parasitism, and how they are modulated
by environmental conditions remains largely unexplored,
particularly in biodiverse and ecologically oscillating eco-
systems such as coral reefs (Connell 1978; Schmitt et al.
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Fig. 10.17 Species diversity of major coral reef ecological communities as a function of ecosystem surface area (coral reef system surface area
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Fig. 10.16 (continued) of coral reef-associated multicellular communities. (Adapted from Fisher et al. 2015). (¢) Species richness for key coral
reef communities in French overseas. For reef-building corals, estimates from different sources are provided. Data from Pichon and Bosserelle
(pers. com.), Benzoni (2019) and IUCN comité francais et al. (2020) result from a more in-depth analysis of sample specimens from the area.
Megafauna comprises large marine species groups: sea turtles, dugongs, dolphins, whales, sharks and rays, and sea snakes
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2009; Mills and Cété 2010; Kayal et al. 2011; McKeon and
Moore 2014; Kayal et al. 2017a; Kayal and Adjeroud 2022).
It is only recently that fine-scale ecosystem time-series data
have enabled empirical investigations on major ecological
processes driving ecosystem resilience (Mumby et al. 2007;
Riegl et al. 2018; Cresswell et al. 2023). To strengthen coral
reef conservation actions, more knowledge is needed on the
ecological processes driving community dynamics, includ-
ing on the less emblematic and cryptic communities such as
microorganisms, algae, and sponges that are understudied
(de Goeij et al. 2013; Brandl et al. 2019b; Cannon et al.
2023; Galand et al. 2023).

10.3.9 Ecosystems

Coral reef ecosystems around the world differ in size, com-
position, health, and dynamics, resulting in a myriad of eco-
system states with unique ecological features. However,
some key ecosystem characteristics enable differentiating
coral reef systems into broad functional categories along
ecological gradients. At a broad consideration, the size and
degree of isolation have strong consequences on the struc-
ture and fate of coral reef ecosystems. On one side of the
spectrum, large continuous systems in the southwestern
Pacific, such as the Australian Great Barrier Reef with
348,700 km? of reef habitats and New Caledonia’s reef sys-
tem with 35,873 km? contrast with small and isolated sys-
tems on the other side of the spectrum, such as the atoll of
Clipperton with its 13 km? of reefs located approximately
950 km from the closest coral reef system (Romero-Torres
et al. 2018; Figs. 10.4 and 10.20). Within this spectrum,
many systems of various sizes are found with differing
degrees of geographic fragmentation and ecological isola-
tion, sometimes due to the presence of natural barriers to dis-
persal (Raitsos et al. 2017; Hock et al. 2017; Romero-Torres
et al. 2018). For example, the 19 km? of coral reefs surround-
ing the single island of Reunion in the Indian Ocean are situ-
ated roughly 200 km from the closest reef system of Mauritius
and 700 km from Madagascar, whereas the 16,200 km? of
reefs in French Polynesia are scattered among 5 archipela-
goes, 118 islands, and atolls (1576 land units including islets,
Fig. 10.20b) across 2,500,000 km? of ocean in the Central
South Pacific. These broad geomorphological characteristics
of reef systems are relatively well-known for shallow habi-
tats in clear waters, thanks in big part to satellite imagery, but
knowledge decreases rapidly with water depth and turbidity
as evidenced by the Great Amazon Reef that was only
recently discovered under the Amazonian river plume and
extends ~1000 km, including into French Guiana’s coastal
waters (Moura et al. 2016; Francini-Filho et al. 2018). The
size and degree of isolation of the reefs determine the level of
chemical and biological connectivity between ecosystems
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and therefore the productivity, regeneration capacity, and
resilience of the diverse species populations they host
(Edmunds et al. 2016; Gounand et al. 2018). In the face of
disturbances, small and isolated coral reef systems are there-
fore generally more vulnerable to full-system collapse and
exhibit limited recovery capacities, while for larger intercon-
nected coral reef systems, disturbance impacts are often
restricted to small portions, resulting in higher rates of demo-
graphic replenishment from adjacent unaffected populations
(Wolff et al. 2016; Riegl et al. 2018; Vercelloni et al. 2019;
Adjeroud et al. 2022). Larger reef systems also host higher
proportions of biodiversity, thanks to a wider geographical
expansion and the amount and diversity of ecological habi-
tats and niches available (Eddy et al. 2021), as illustrated
with New Caledonia’s large ecosystem surface areas and
associated biodiversity metrics (Fig. 10.17). Meta-ecosystem
approaches characterizing chemical and demographic flow
between ecosystems are still nascent, and their development
should deepen our understanding of ecological drivers of
ecosystem productivity and resilience (Gounand et al. 2018;
Condie et al. 2021).

Ecosystem productivity and trophic organization are other
key attributes characterizing different states in coral reef eco-
systems. However, comprehensive ecosystem-level evalua-
tions remain scarce, as most ecological investigations are
conducted at the population or community scale, seldom
integrating the various communities constituting coral reef
ecosystems (Fig. 10.2; Rogers et al. 2015; Condie et al.
2018; Dubois et al. 2019). Nevertheless, simplified evalua-
tions based on the representation of a limited number of eco-
logical components or functions capture key species
interactions such as habitat provision, predation, and compe-
tition, therefore characterizing major ecosystem dynamics
(Kayal et al. 2012b; Mourier et al. 2016; Brandl et al. 2019a;
Pimiento et al. 2020; Adam et al. 2021; Wolfe et al. 2023).
Overall, the studies indicate that the magnitude of ecosystem
biomass and its distribution among different ecological com-
partments vary in space and time as a function of the carry-
ing capacity of the systems, the length and complexity of the
food webs, the species richness of the different communities,
and their dynamics in relation to the natural and human envi-
ronments (Trebilco et al. 2013; Jacquet et al. 2020;
Nagelkerken et al. 2020; Mehner et al. 2022). As such,
healthy coral reef ecosystems situated in protected areas near
the center of marine biodiversity tend to be characterized by
more developed food webs and higher overall productivity,
thanks to a more effective exploitation of ecological niches
(McCook et al. 2010; Mellin et al. 2016; Morais et al. 2021;
Heudier et al. 2023). In contrast, disturbed, degraded, and
less diverse coral reefs tend to show shorter food webs and
lower ecosystem productivity due to a limited exploitation of
ecological niches, mortality events, and eventually the col-
lapse of most vulnerable species populations (D’agata et al.
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Fig. 10.20 Characteristics of coral reefs and associated ecosystems org for comparison), along with the diversity in reef geomorphologic
across French tropical overseas. Ecosystem surface areas and the per-  habitats (number of level 5 teledetection classification out of a total of
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2016; Cinner et al. 2018; Darling et al. 2019; Duprey et al.
2020; Eddy et al. 2021; Zhang et al. 2023). Coral decline,
nutrient discharge, and the collapse of herbivore populations
have led to drastic ecosystem upheavals, including shifts in
dominance from corals to algae in many places (McManus
and Polsenberg 2004; Schmitt et al. 2019; Morais et al. 2020;
Adam et al. 2021; Reverter et al. 2022). While the ecological
mechanisms controlling ecosystem resistance and resilience
to such abrupt transition are generally understood, ecosys-
tem vulnerability to various forms of stressors acting in iso-
lation or in concert remains largely to be quantified. The
development of new methods for monitoring coral reef eco-
systems such as bioacoustics (Elise et al. 2019; Dimoff et al.
2021), remote-sensing (Hedley et al. 2016), and eDNA
(Alexander et al. 2020; West et al. 2020), boosted by machine
learning algorithms (Burns et al. 2022; Ditria et al. 2022),
can help accelerate data acquisitions and processing, includ-
ing in cryptic and mesophotic coral reef habitats for which
relatively little is known (Brandl et al. 2019b; Pérez-Rosales
et al. 2022; Wolfe et al. 2023).

Among the major ecological compartments of coral reef
ecosystems, species diversity generally culminates in inver-
tebrates, followed by fishes, corals, and algae, although the
relative contributions of the different communities to species
diversity vary among regions (Figs. 10.16 and 10.21a). While
differences in data availability among regions blurs to some
degree the level of certainty on these patterns, furthering
these trans-community evaluations will bring heightened
understanding of the magnitude and organization of ecosys-
tem biodiversity among regions and taxonomic groups.
Inter-regional comparisons indicate a marked contrast in
coral reef ecological states between oceanic basins, with cor-
als prevailing as primary constituents of reef habitats in the
Pacific Ocean and macroalgae dominating the substrate on
Caribbean reefs, with an intermediate state observed in the
Indian Ocean (Fig. 10.21b; Reverter et al. 2022). These
regional differences in dominance between corals and mac-
roalgae concord with global gradients in coral species diver-
sity and robustness of herbivory, which culminate in the
Pacific Ocean and are weakest in the Caribbean (Hughes
et al. 2002b; Bellwood et al. 2005; Siqueira et al. 2019;
Cramer et al. 2021). Similarly, the abundance of various spe-
cies groups changes with the latitudinal gradient, including
sponges which are more prevalent near the equator and soft-
corals at higher latitudes (Reverter et al. 2022). A positive
relationship is observed between community diversity and
biomass across regions for corals and fish, but not for algae
in which the species diversity to biomass relationship is neg-
ative (Fig. 10.22). These patterns concord with our general
understanding that species diversity supports higher ecologi-
cal productivity, particularly at higher trophic levels, in
structurally complex ecosystems dominated by corals, and
declines when reefs are dominated by algae (Mumby and
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Steneck 2008; Graham and Nash 2013; Nash et al. 2014;
Rogers et al. 2015; Clements et al. 2017). They indicate bio-
mass maxima in coral and fish communities are achieved by
species additions and therefore a diversified occupation of
ecological niches, whereas high algal productivity tends to
be driven by few proliferating species. These community-
level differences have cascading effects that spread to other
ecosystem compartments through species ecological func-
tions and trophic and other forms of biotic interactions.
Diversified coral communities contribute structural habitats
for a myriad of organisms, including for species necessitat-
ing relatively large and long-lasting structures, therefore
amplifying biodiversity and trophic food chains beyond the
capacity of algal structures (Richardson et al. 2017a; Urbina-
Barreto et al. 2021). This topic necessitates deeper investiga-
tion to comprehend the links between biodiversity, ecological
productivity, habitat, and spatial scale, and the consequences
of the ongoing changes of coral reef ecosystems.

A synthesis of the major environmental disturbances
impacting coral reefs across French tropical overseas over
the last decades indicates coral reef systems differ in their
exposure and vulnerability to different types of disturbance
(Fig. 10.23). While some disturbances, such as cyclones
and increasingly coral bleaching events, occur globally in
the tropics (Hughes et al. 2018; Puotinen et al. 2020), oth-
ers are restricted to specific regions. This is the case with
major diseases causing coral and sea-urchin Diadema antil-
larum die-offs, outbreaks of the holopelagic macroalgae
Sargassum fluitans and S. natans, and rapid population
expansions of invasive seagrass Halophila stipulacea and
lionfish Pterois spp. in the Caribbean Sea (Co6té and Smith
2018; Winters et al. 2020; Marsh et al. 2021; Hewson et al.
2023). Similarly, outbreaks of the coral predator crown-of-
thorns starfish Acanthaster spp. are restricted to the Indo-
Pacific, whereas tsunami impacts to coral reefs are mostly
reported in the southwest Pacific (Lgvholt et al. 2012;
Pratchett et al. 2014). These large-scale spatial patterns
emerging from inter-regional comparisons are also modu-
lated by smaller, intra-system differences, particularly in
broad and fragmented coral reef systems such as French
Polynesia, New Caledonia, Scattered Islands, and Great
Barrier Reef where disturbance impacts are spatially con-
tained (Kayal et al. 2012b; Wolff et al. 2016; Adjeroud
et al. 2018a; Mellin et al. 2019; Vercelloni et al. 2019;
Pérez-Rosales et al. 2021a).

Despite significant differences in the level of knowledge
available on environmental disturbances among regions, it
appears that some coral reef systems like the ones in French
Polynesia, New Caledonia, and the Caribbean islands are
situated in areas prone to high frequency of disturbance,
while others in Wallis and Futuna and Scattered Islands
(though Tromelin is in a cyclone route) seem to lie in rela-
tively stable environmental sanctuaries that suffer fewer
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Fig. 10.21 Coral reef ecosystem diversity and productivity across
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disturbance events (Fig. 10.23b; Lgvholt et al. 2012;
Puotinen et al. 2020; Kuempel et al. 2022). While coral
reefs have long evolved with environmental disturbances
whose nonequilibrium effects on ecosystems are seen as a
major source of their exceptional biodiversity (Connell
1978; Quattrini et al. 2020), the consequences of recent
changes in disturbance types and regimes for coral reef
resilience and functionality remain insufficiently under-
stood to support adequate management, especially in
regions of high exposure and vulnerability Adjeroud et al.
2018a; Vercelloni et al. 2019; Leinbach et al. 2021; Pérez-
Rosales et al. 2021a; Carlot et al. 2023; Zhang et al. 2023).
Eutrophication and fishing are suspected to generate a
higher occurrence and intensity of Acanthaster outbreaks
and associated mass coral mortality, whereas the frequency
and magnitude of temperature anomaly-induced coral
bleaching events and cyclonic storms have risen with ongo-
ing climate changes (Sweatman 2008; McCook et al. 2010;
Mellin et al. 2016; Vanhatalo et al. 2017; Puotinen et al.
2020; Cresswell et al. 2023). Time-series analyses of coral
cover indicate Acanthaster outbreaks have resulted in
strongest impacts on reefs through mass coral mortality and
cascading effects on various reef communities, followed by
cyclones and then coral bleaching events, although coral
mortality associated with regional and global bleaching is
becoming more prominent (Osborne et al. 2011; De’Ath
et al. 2012; Kayal et al. 2012b; Adjeroud et al. 2018a;
Vercelloni et al. 2019; Pérez-Rosales et al. 2021a; Gilmour
et al. 2022). Coral bleaching events have become a com-
mon part of coral reef dynamics in most tropical regions,
with variable inter-annual occurrences depending on cli-
matic oscillations (El Nifio Southern Oscillation, North
Atlantic Oscillation) and the ecological state (abundance,
composition) of coral communities (Sully et al. 2019).

Species richness

Species richness

(2019, 2021) and Souter et al. (2021); see Fig. 10.16 for species rich-
ness data sources

Higher sea water temperatures have also been related to
increases in coral disease (Burke et al. 2023). The National
Oceanic and Atmospheric Administration (NOAA)‘s
(https://coralreefwatch.noaa.gov) tool has been a major
information source for marine heatwave and coral bleach-
ing alerts and forecasts (and https://www.nhc.noaa.gov for
tropical cyclones), although its continued availability is
uncertain due to current government instability and public
service meltdown in the USA.

Over recent decades, much research attention has been
dedicated to elucidating the mystery behind Acanthaster
outbreaks, whose drivers have remained elusive (Pratchett
et al. 2014, 2017), although pieces of knowledge add up
with new studies performed during each new outbreak
cycle. Accumulated evidence points toward the role of
nutrient limitations on larval stages (Fabricius et al. 2010;
Wooldridge and Brodie 2015), predatory control particu-
larly on juveniles (Sweatman 2008; Cowan et al. 2017;
Westcott et al. 2020), and, more recently, the capacity of
the juvenile seastars to remain in a latent (ecologically
“dormant”) herbivorous stage where cryptic populations
hidden in dead-coral rubble can build up over years before
shifting to corallivory and full-grown mature adults once
live coral is abundant (Deaker et al. 2020; Wilmes et al.
2020; Deaker and Byrne 2022). Recurrent observations of
outbreak episodes have enabled identification of initiation
sites and propagation patterns of outbreaks in several
regions, along with a good knowledge of their impacts to
coral communities, repeatedly observed patterns that
therefore appear predictable (Kayal et al. 2012b; Adjeroud
et al. 2018b; Babcock et al. 2020; Wilmes et al. 2020;
Condie et al. 2021). Among French tropical overseas,
Acanthaster outbreaks are recorded in French Polynesia,
New Caledonia, and Mayotte with a periodicity of
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~15 years (Fig. 10.23), which is consistent with the fre-
quency of outbreaks reported in other regions such as
Australia’s Great Barrier Reef (Kayal et al. 2012b;
Pratchett et al. 2017; Adjeroud et al. 2018a; Babcock et al.
2020; Richards et al. 2021). Occurrences of the outbreaks
seem correlated with ocean productivity in relation to
regional weather oscillations influencing patterns of tem-
perature, rainfall, and wind (Fabricius et al. 2010; Houk
and Raubani 2010; Wooldridge and Brodie 2015;
Matthews et al. 2020), with hitherto no direct evidence of
recent increases in frequencies or intensities of the out-
breaks. Yet, comparative coral reef health assessments
highlight the importance of preserving ecosystem integ-
rity for higher chances of resilience in the face of
Acanthaster outbreaks (Sweatman 2008; McCook et al.
2010; Mellin et al. 2016; Westcott et al. 2020; Kroon et al.
2021). Recently, much effort has been dedicated to identi-
fying reef predators able to keep Acanthaster populations
in check as a natural solution to outbreaks (Cowan et al.
2017; Desbiens et al. 2023; Kayal and Lenihan 2025).
Within-system studies indicate the seastar outbreaks are
restricted to reefs subject to coastal influence and propa-
gate from distinct initiation sites that are exposed to high
nutrient discharge, including mid-shelf reefs near the
towns of Cairns in Australia’s Great Barrier Reef and
Noumea in New Caledonia and the north shore of the
island of Moorea in French Polynesia (Fabricius et al.
2010; Kayal et al. 2012b; Wooldridge and Brodie 2015;
Adjeroud et al. 2018b; Adam et al. 2021). As a new cycle
of Acanthaster outbreaks spreads in the Pacific, inter-
regional connectivity between Acanthaster populations
among adjacent systems and the degree of synchronicity
of outbreaks in response to regional weather patterns
remain to be explored. Among major environmental dis-
turbances impacting coral reefs, Acanthaster outbreaks
are the easiest to try to mitigate, and control programs are
performed in various regions (Condie et al. 2021; Castro-
Sanguino et al. 2023). Yet, culling of the seastar popula-
tions is costly, has shown relatively limited efficiency
over large spatial scales, and addresses a symptom rather
than the root causes of the outbreaks. Nevertheless,
despite its notorious reputation as a harmful species, a
pest (Pratchett et al. 2014; Kayal et al. 2017b), Acanthaster
is also recognized for its role as a keystone predator ben-
efiting biodiversity by feeding preferentially upon com-
petitive acroporids (particularly genera Acropora and
Montipora) that otherwise have the capacity to outcom-
pete other corals (Kayal et al. 2011; Darling et al. 2012;
Pratchett et al. 2017; Kayal and Adjeroud 2022). The
degree to which Acanthaster outbreaks are triggered by
large abundance of their preferred prey species remains to
be investigated, though long-term observations in Moorea,
French Polynesia, indicate swarms of seastars emerge
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when competition for space among corals is particularly
prevalent (Fig. 10.24).

10.3.10 Socio-ecosystems

Coral reef socio-ecosystems around the world come in a
variety of forms, combining differing levels of natural eco-
system and human society features (Figs. 10.20, 10.21,
10.22, 10.23 and 10.25). The prevalence and impacts of
human populations, as well as their ties to ecosystems for
coastal protection, food, and economic resources, are key
to ecosystem health and the resulting level of sustainabil-
ity and benefits to nature and society (McCook et al. 2010;
Cinner et al. 2018; Comte and Pendleton 2018; Williams
et al. 2019; Darling et al. 2019; Castro-Cadenas et al.
2022). Small natural systems supporting large human pop-
ulations tend to suffer from stronger impacts from coastal
development, overexploitation, and pollution, resulting in
reduced ecosystem health, management deficiencies, and
limited socio-ecosystem resilience (Duprey et al. 2020;
Boyce et al. 2020; Ouédraogo et al. 2021; Andrello et al.
2022; Ouédraogo et al. 2023). This begs the long-standing
question of the carrying capacity of natural systems, not
only in terms of the size of the human population they can
support but most importantly the overall level of stress
they can sustain without declining. Other socio-ecosystem
aspects, including the ecological and geomorphological
contexts as well as the economic and cultural ties to the
reef, further contribute to the vulnerabilities of the systems
(Mumby et al. 2007; Anthony et al. 2015; Siqueira et al.
2019; Cramer et al. 2021). When management strategies
fail to preserve coral reef ecosystem health, declines in
biodiversity, biological productivity, and ecological func-
tionality reduce the level of ecosystem services provided
to society, often with a rise of negative interactions and
ecosystem disservices (Speers et al. 2016; Woodhead et al.
2019; Carlot et al. 2023). Harmful algal blooms such as
outbreaks of benthic ciguatoxin-producing dinoflagellates
occur more frequently in degraded environments where
dead coral skeletons and macroalgae surfaces provide sub-
strate for the microorganism, with strong societal conse-
quences for human health and economy (Fig. 10.26; Alves
de Souza et al. 2022). Described for centuries in French
tropical overseas, ciguatera poisonings are on the rise
under the possible influence of global changes (marine
heat waves, ocean acidification, etc.), and the distribution
range of ciguatoxin-producing species and their accumula-
tion in trophic food webs is expanding to subtropical/tem-
perate regions, though the statistics of human poisonings
remains highly underestimated as most cases go undocu-
mented (Fig. 10.27; Rongo et al. 2009; Chinain et al.
2021). The CiguaWatch Initiative, led by French Polynesia,


https://www.zotero.org/google-docs/?X8Ym9e

10 Snapshots of Coral Reef Biodiversity

219

- " C ; y
»: -
- ) ™
: n, T :"_-

g‘

Fig. 10.24 Photographs illustrating the co-occurrence of outbreaks of
the coral predatory seastar crown-of-thorns starfish (Acanthaster) with
periods of high abundance of their favorite prey, the acroporid corals
(particularly genera Acropora and Montipora). Photographs were taken
in the lagoon of Moorea, French Polynesia, at the onsets of two distinct
episodes of Acanthaster outbreaks occurring ~15 years apart and caus-
ing widespread coral mortality (Fig. 10.23). The pictures show the
capacity of encrusting Montipora to overgrow other corals, particularly

provides a regional platform for training and data sharing
on Ciguatera poisoning surveillance in the South Pacific
(https://ciguawatch.ilm.pf). Ongoing research particularly
seeks a better understanding of ciguatera-related algal
bloom ecology for anticipating and monitoring outbreaks,
evaluating their consequences on societies, and improving

massive Porites which is foundational to forming large habitat struc-
tures in the lagoon. Because Acanthaster preferentially preys upon
acroporids, their episodic outbreaks prevent Montipora to fully out-
compete Porites, promoting species coexistence. Bottom-right picture
shows Acropora and Montipora colonies (underscored names) bearing
white feeding scars characteristic of recent predation by the seastar. See
text for references on the topic

ciguatoxin detection tests, patient diagnostic tools, and
medical care (Rongo et al. 2009; Chinain et al. 2020;
Chinain et al. 2021). Other examples of negative feedback
from system alterations include recent concerns about
increasing outbreaks of the coral predatory seastar
Acanthaster throughout the Indo-Pacific and Sargassum
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Fig. 10.25 Differences in coral reef socio-ecosystems among French
tropical overseas. The Ocean health index summarizes ecosystem state
and resilience on a scale of 0—100 (Halpern et al. 2012). Shark attack

frequency was calculated over the 1980-2023 period. (Data from
https://oceanhealthindex.org, https://recifs.epfl.ch, https://www.iedom.
fr, https://public.opendatasoft.com and IFRECOR (2021))
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Fig. 10.26 Ciguatera poisoning biogenesis and transmission (a, ing (CP) incidence rates among regions (¢, data adapted from Chinain
adapted from Chinain et al. 2023), distribution of ciguatoxin (CTX) et al. 2021 and references therein). PICTs for Pacific Island Countries
producing species (Gambierdiscus spp.) Ciguatera poisoning preva- and Territories

lence areas (b, adapted from Chinain et al. 2021), and Ciguatera poison-
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Fig. 10.27 Documented number of human ciguatera poisoning (CP)
cases through time per region (a, adapted from DASS 2018; Chinain
et al. 2021) and vectors implicated in both autochthonous and imported

strandings in the Caribbean (Fig. 10.23; Pratchett et al.
2014; Matthews et al. 2020; Marsh et al. 2021) and critical
shark attacks on humans in Australia, Reunion, and New
Caledonia (Fig. 10.25; Taglioni et al. 2019; Maillaud et al.
2022; Riley et al. 2022), although there is still limited
understanding of underlying drivers. In the face of uncer-
tainties and lack of incentives to address root causes,
Sargassum removals and culling of Acanthaster and shark

poisonings (b, data from Boucaud-Maitre et al. 2017; DASS 2018;
Gatti and Chinain 2023)

populations are common practice in different coral reef
socio-ecosystems, practices that are often hotly debated
(Papastamatiou et al. 2006; Vanhatalo et al. 2017; Pratchett
and Cumming 2019; Babcock et al. 2020; Condie et al.
2021; Gray et al. 2021; Maillaud et al. 2022; Borsa et al.
2023). Fortunately, positive examples of human-wildlife
interactions with potentially deadly animals also exist,
although the mechanisms determining sustainability and
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their thresholds remain in big part to be understood
(Udyawer et al. 2021).

Coral reef biodiversity and associated ecosystem produc-
tivity and services have long supported the development of
human societies in the tropics. Yet in various places, rapid
and ecologically unsustainable growth has caused coastal
alterations that are beyond the tolerance capacity of ecosys-
tems, threatening the sustainability of the coral reef socio-
ecosystems (Woodhead et al. 2019; IPBES 2019; Duprey
etal. 2020). Achieving sustainable coral reef socio-ecosystem
development is however not easy, as local human activities
often impact marine ecosystems over large spatial scales and
are increasingly combined with global environmental
changes (Donovan et al. 2023), as many human concentra-
tions have already caused significant and long-lasting dam-
age to their surrounding ecosystems and as many societies
still prioritize unsustainable development paths (Brodie and
Waterhouse 2012; Cinner et al. 2018; Daskin and Pringle
2018; Kayal et al. 2019; Darling et al. 2019; OECD 2020;
Cramer et al. 2021; Ouédraogo et al. 2021; Ouédraogo et al.
2023; Calvin et al. 2023). The most extreme disturbances in
French tropical overseas took form as nuclear testing in
1966—1996 on the islands of Mururoa and Fangataufa in
French Polynesia, of which 41 were conducted above ground
and 140 in volcanic rock under the coral reef (Philippe et al.
2022), and broad use of the highly toxic and long-lasting
organochlorine pesticide chlordecone in Guadeloupe and
Martinique in 1973-1993 (Multigner et al. 2016), with, apart
from cancers in local human populations, largely unknown
consequences on the coral reef socio-ecosystems and life
more broadly.

Among the >500 million people living in tropical coastal
areas protected from erosion and storm waves by coral reefs,
~100 million live below 10 m elevation within 10 km of a
coral reef (Ferrario et al. 2014; Beck et al. 2018; Carlot et al.
2023). Among these, ~three million people live in French
tropical overseas, mostly in Reunion, Martinique, and
Guadeloupe where coastal urbanization and human density
are the highest, followed by French Polynesia, Mayotte, New
Caledonia, and French Guiana, although the latest is largely
dominated by mangroves (Figs. 10.20 and 10.25). Coastal
protection by coral reefs is particularly prominent in New
Caledonia due to the high exposure to tsunamis, particularly
on the eastern coasts, as well as in French Polynesia where
relatively young barrier reefs protect the small Central
Pacific island community from storm waves (Sahal et al.
2011; Lgvholt et al. 2012; Burke and Spalding 2022). Fishing
rates are the highest in French Polynesia where seafood con-
stitutes a highest portion of the diet and fish exportation a
significant part of the economy (Morin et al. 2016; FAO
2022), whereas tourism is particularly developed in the
Caribbean, followed by Reunion and French Polynesia. The
degree of reliance of tropical coastal societies on coral reefs
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varies from one system to another, though decline in coral
reef health has strong consequences for exposure to flooding,
food security, and economic opportunities (Pendleton 2010;
Comte and Pendleton 2018; Alves de Souza et al. 2022;
Carlot et al. 2023).

Coral reef socio-ecosystem vulnerability depends in big
part on the ability of societies to durably manage ecosystems
by preventing degradation and overexploitation through
implementation of effective environmental regulations,
exploitation quotas, and protected areas (McCook et al.
2010; Anthony et al. 2015; Rogers et al. 2015; D’agata et al.
2016). Overall, there are four major management strategies
that target social and ecological vulnerabilities: environmen-
tal mitigation, ecosystem protection, restoration, and adapta-
tion, though trade-offs and synergies between the different
strategies and prerequisite conditions for success are largely
unevaluated (Comte and Pendleton 2018; Thiault et al.
2020a). Comparisons across socio-ecosystems indicate that
key characteristics of success include strong regulation
enforcement and community engagement in management
strategies (Cabral et al. 2018; Thiault et al. 2020a; Thiault
et al. 2020b; Maxwell et al. 2020). Coral reef management
across French overseas currently includes different levels of
regulatory-designated marine protected areas, varying from
0% of ecosystem surface area in Wallis and Futuna to 100%
in Clipperton (Fig. 10.25), though this does not account for
other forms of locally recognized management. Limitations
to design, implement, and enforce sustainable environmental
management are often economic in nature, related to the
level of inequality, dependency on natural resources and
global market, and capacity of protection from local and
international poaching (McCook et al. 2010; Cabral et al.
2018; Januchowski-Hartley et al. 2020; Thiault et al. 2020b;
Maxwell et al. 2020; FAO 2022). The governance of socio-
ecosystems and how different societal actors take part in
management decisions are also important factors in socio-
ecosystem trajectories (Morrison et al. 2020; Thiault et al.
2020a).

Coral reef socio-ecosystems exhibit a multitude of gover-
nance systems, as observed in French tropical overseas char-
acterized by different degrees of decision-making
centralization and a hierarchy of bodies performing policy-
making, public safety, and territorial planning roles with dif-
ferent jurisdictions (Fig. 10.28). Given increasing
environmental changes, and that many coral reefs may
already be approaching their maximum tolerance limits,
governance systems face the challenge of adapting rapidly
while engaging a variety of societal actors at different scales
(Donovan et al. 2023). Success in achieving healthy and
resilient coral reef systems may depend on the capacity of
socio-ecosystems to anticipate and adapt to future challenges
(Rogers et al. 2015). Socio-ecosystemic diversity is a key
attribute of French tropical overseas that are characterized by



224

F. Pellerin et al.

Province

Environment Community
agency !

Marine
agency

Marine
agency

Environment
agency

Marine
agency

Marine
agency

Community
and tribes

LEGAL STATUS FRENCH TROPICAL GOVERNANCE TASK
OVERSEA
French Guiana Guadeloupe
Policy
Oversea @ . making
European French
Department/ , Directi £t
Region Reunion Mayotte |rec:;|ves o
Control and '
safety
French
Martinique
Territorial Territorial ﬁ
erritoria s QB
Planning g2k
collectivity 9 9
Policy
S
making KT .
=N European French Ministry |
Saint-Martin Control and Directives oftbe Sea i
ontrol an
Overseas safety ,
Collectivity French Ministry
of the Sea !
Territorial mh
Planning ."
Policy
making fg ) !
Saint Wallis & French Ministry
Barthelemy Futuna Control and ’\ of the Sea H
ontrol an
Overseas safety -
Collectivity Frenchi Ministry
of the Sea
Territorial 4], :
Planning .f'
Policy
making
= i French Southern
Scattered Islands c Land ' and Anta!’ctlc Lands
ontrol an
Overseas
S " - E R R
Collectivit
Y French Southern
and Antarctic Lands
Territorial
Planning ?3?@
French Southern !
and Antarctic Lands !
Policy
making QY
N i ! Marine
New Caledonia Land i ! agency
Overseas
safef
Collectivity ty \ e .
. : | French:Ministry Marine
with specific i ! i
stautus 1 ofthe Sea  agency
Territorial e
Planning ." g
Sectoral
agencies
Policy
making Mari
arine
French Polynesia Control and agency
Overseas safety - 1
Collectivity French Ministry Ma!’lne
ofthe Sea  agency
Territorial g, Y
Planning ."
Policy
making
Clipperton island Control and
Overseas safety X ' - ——
Collectivity iO\_/e.rsea ngh commissary ba}ed
{Ministry in French Polynesia
Territorial E;
Planning I‘i@

{Oversea High commissary based

Ministry

'in French Polynesia

Fig. 10.28 Governance systems of coral reef socio-ecosystems in
French tropical overseas. Diagrams represent the hierarchy and juris-
dictions of different governing bodies in relation to the three tasks of

policymaking, public safety, and territorial planning. Note that the
uninhabited atoll of Clipperton is governed by France through a delega-
tion based in French Polynesia



10 Snapshots of Coral Reef Biodiversity

contrasting human histories, social and political organiza-
tions, and cultural and economic ties to natural resources.
Societal challenges in these dispersed insular systems
include finding a balance between local and national identi-
ties in a postcolonial era where the search for democracy,
local governance, and social development is reliant on eco-
system preservation for coastal protection, food security, and
economic development but challenged by pressures for over-
exploitation from the globalized market, a context increas-
ingly exacerbated by environmental degradation and coral
reef decline.

10.3.11 Biogeoclimatic Systems

Coral reefs interact with the Earth’s geologic and climatic
environments through multiple ocean-land-atmosphere
interchanges whose prevalence varies with the size and char-
acteristics of the systems (Fig. 10.29). By acreting carbon-
ated reefs along the coasts, corals sequestrate oceanic carbon,
modify ocean alkalinity, and produce shallow water substrate
at slow yet potentially large scales (Smith 1978; Spalding
et al. 2001; Jones et al. 2015; Carlot et al. 2021). The reefs
reduce wave energy protecting coastlines from erosion and
submersion and produce large amounts of carbonated sand
that accumulates to create new habitats for many marine and
terrestrial species, therefore amplifying biodiversity and
associated benefits (Figs. 10.20 and 10.29¢). Indeed, coral
reef accretion and erosion generate conditions favorable to
the establishment of diverse biological communities includ-
ing seagrass and algae beds, mangroves, and the vegetation
covering lagoonal islets, all of which contribute additional
sets of ecological functions and ecosystem services such as
habitat creation, carbon sequestration, and attenuation of
wave and wind energy (Moberg and Folke 1999; Mclvor
et al. 2012; Guannel et al. 2016; Andréfouet et al. 2021;
Carlot et al. 2023; Heudier et al. 2023). Among French tropi-
cal overseas, the contribution of coral reef accretion to the
coastal systems’ emerged land and lagoonal systems is most
prominent in Scatter Islands, Clipperton, French Polynesia,
Wallis and Futuna, Mayotte, Guadeloupe, and New Caledonia
(Fig. 10.29c¢).

Coral reefs also interact with the local climate. By pro-
ducing large stretches of white sand beaches and clear and
shallow underwater habitats, coral reefs modify the local
albedo, or how much solar radiation is sent back to the atmo-
sphere, with a direct impact on surface temperature (Hays
et al. 2001; McGowan et al. 2019). Coral reefs and associ-
ated ecosystems may influence local atmospheric conditions
through heat and moisture exchanges and affect local meteo-
rology such as cloud cover and rainfall (McGowan et al.
2022). Coral reefs are a source of dimethyl sulfide, an impor-
tant aerosol involved in cloud formation, though its contribu-
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tion to the local and regional aerosol burdens might be low
compared to human sources (Yuan et al. 2022; Fiddes et al.
2022). Human societies living off the reef also contribute to
local changes in albedo and wind through deforestation,
urbanization, and various heat sources (Jin et al. 2019;
Ouyang et al. 2022). The relative importance of coral reefs to
the local climate might therefore vary from one system to
another, depending on local characteristics of land-to-reef
ratio, climatic environment, and human emissions of heat,
gas, and particles. This includes direct emissions of heat for
energy production and use in diverse sectors such as trans-
port and industries, changes in albedo through land-use
change including deforestation and urbanization, and emis-
sions of greenhouse gas such as CO, and methane, and aero-
sols (Yuan et al. 2022). This diversity of coral reef
biogeoclimatic systems is well illustrated across French
tropical overseas (Fig. 10.29), providing a rich study system
to investigate how coral reef systems interact with local and
regional climate nowadays and into the future. This research
avenue may help deepen understanding of mechanisms
determining coral reef vulnerability to climate change, iden-
tification of potential adaptation and mitigation solutions,
and predictions of thermal stress induced coral bleaching
under future climatic conditions.

In the objective of socio-environmental sustainability,
decarbonation of island emissions remains a real challenge,
as many tropical overseas rely heavily on importations for
food, material, energy, and economic activities (e.g., tour-
ism), all of which come at a high cost in terms of carbon
emissions (Kuo and Chen 2009). Among French tropical
overseas, New Caledonia, whose economy is based on the
mining industry, has the highest energy consumption and
carbon emissions (Fig. 10.29a), with >75% of energy con-
sumption associated with mineral extraction, purification,
and export, mostly of nickel and cobalt (Losfeld et al. 2015).
It is also the most distant tropical overseas from metropolitan
France (Fig. 10.4), amplifying import-export-associated
emissions. Despite ample access to solar, aeolian, and
hydraulic energy, New Caledonia has a low proportion of
renewable energy, though transition to green energy is a local
priority and more supporting infrastructure has started to
emerge around the archipelago over the recent years. In
descending order of emissions, Reunion, Guadeloupe,
Martinique, French Polynesia, and Guiana follow human
population abundances (Fig. 10.30). Per capita emissions are
lowest in Mayotte, which recently transitioned into a French
overseas department and exhibits relatively low rates of
urbanization (Figs. 10.25 and 10.28; Ninon 2007), and high-
est in New Caledonia with its mining industry, the two places
standing out from the CO, emission to human population
relationship (Fig. 10.30). Guadeloupe, Reunion, and
Martinique are leading the transition to sustainable energy
(Fig. 10.29a), with rapid changes over recent years. While
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coral reef systems around the globe are exposed to different
temperature regimes in relation to their latitudinal distribu-
tions (Fig. 10.30), the Intergovernmental Panel on Climate
Change (IPCC) projections predict higher temperatures, sea-
levelrise, and lower pH, with a higher exposure for Caribbean
reefs (Fig. 10.29b) that adds to their already higher vulnera-
bility to coral decline and ecological shifts (Figs. 10.21b and
10.23; Hoegh-Guldberg et al. 2017; Kuempel et al. 2022). In
the current battle for ecological and climate sustainability,
tropical islands are key protagonists as both major contribu-
tors and victims of environmental decline and have a deci-
sive role to play (Hernandez-Delgado 2015).

Overview of Coral Reef
Biodiversity Metrics Across
French Tropical Overseas

10.3.12

Coral reef systems across French tropical overseas differ in
many aspects, as expressed by the disciplinary metrics used
to assess biodiversity at the multiple scales of biological and
ecological organization covered in this chapter, though data
remains incomplete and unbalanced (Figs. 10.5-10.30). A
multidimensional representation along the various ecologi-
cal gradients with available data enables visualizing the
degrees of similarity and magnitudes of variation between
the different systems (Fig. 10.31). This representation distin-
guishes along a primary axis New Caledonia, with the largest
coral reef system and highest rates of species richness and

habitat diversity, from the other French overseas that fall into
three distinct groups along a secondary axis. On one side of
this axis lies the densely populated and touristic systems
with a status of overseas department of Martinique,
Guadeloupe, and Reunion, contrasting with the other side of
less densely populated systems of French Polynesia and
Wallis and Futuna in the South Pacific and the uninhabited
systems of Clipperton and Scattered Islands, and between
the two extremes is the grouping of Saint Martin, Saint
Barthelemy, Mayotte, and French Guiana. Along this sec-
ondary axis, the less densely populated systems are also
characterized by stronger ties to the reef through higher rates
of coastal protection and fish catch and higher ecosystem
health as reflected by ocean health and coral bleaching indi-
ces than the more densely populated localities. While every
coral reef system is unique, this multidimensional represen-
tation underscores how much New Caledonia differs from
other systems, standing as a singular hotspot for coral reef
biodiversity. A deeper exploration of coral reef biodiversity
is necessary to further our understanding of biodiversity
hotspots and their preservation, in French tropical overseas
and globally.

10.3.13 Knowledge Gaps

Our synthesis identifies a generally positive correlation
between the bioecological scale of organization of coral reef
life forms and the level of knowledge available (Figs. 10.32
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estimated based on data completeness for the different metrics pre-
sented in Figs. 10.5-10.30, which is in part influenced by data accessi-
bility for the purpose of the present study

Fig. 10.32 Summarized state of knowledge on coral reef biodiversity
by scale of biological and ecological organization and across French
tropical overseas. Proportions of knowledge and knowledge gaps are
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Fig. 10.33 Relationship between the state of knowledge (% of
acquired data) and scale of biological and ecological organization,
based on Fig. 10.32. Percentage of knowledge is estimated based on

and 10.33), which accords with the young age of scientific
disciplines and limitations in exploring biodiversity at
smaller spatial scales, although genetic and molecular
approaches are becoming more accessible. Similarly, little
data is available for small and cryptic organisms such as bac-
teria, viruses, and fungi, while ecologically key and emblem-
atic macroorganisms such as reef-building corals and fishes
have been more studied. Global databases play a central role
in synthesizing and making such knowledge available,
though are still lacking for many biological groups and disci-
plines. Coral reef biodiversity metrics are also unbalanced in
space as reflected among French tropical overseas, although
such shortcomings are also observed in other types of eco-
systems where knowledge and conservation are highly
skewed (Guerra et al. 2020; Maxwell et al. 2020). Little is
known on cryptic and mesophotic habitats, which are con-
sidered potential refuges for corals in a warmer climate and
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data completeness for the different metrics presented in Figs. 10.5-10.30,
which is in part influenced by data accessibility for the purpose of the
present study

whose exploration is only starting, including the recently
discovered Great Amazonian Reef, parts of which lie in
French Guinea waters (Moura et al. 2016; Francini-Filho
et al. 2018; Pérez-Rosales et al. 2021b; Pérez-Rosales et al.
2022). There are still major knowledge gaps in most if not all
metrics of biodiversity, and some estimations come with sig-
nificant uncertainties, including recent questioning on spe-
cies delineation and the speed of acclimation versus
adaptation processes (Galtier 2019; Gibert et al. 2019).
Overall, most of our knowledge relates to the state of coral
reef biodiversity and its distribution as measured at different
scales, whereas our understanding of driving mechanisms
controlling biodiversity levels across scales and their dynam-
ics remains yet too limited to enable predictions and there-
fore more proactive management strategies for biodiversity
resiliency in the face of environmental changes (Rogers et al.
2015; Donovan et al. 2023). Nevertheless, some coral reef
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sites stand out as world references for exploring coral reef
biodiversity and its drivers Thirukanthan et al. 2023. This
includes portions of the Great Barrier Reef in Australia, such
as Lizard Island (https://australian.museum/), the island of
Moorea in French Polynesia, which is arguably the most
studied reef system on the planet, thanks to two international
field research stations acting as hubs for coral reef studies
(www.criobe.pf, www.moorea.berkeley.edu) and coral reefs
near Noumea in New Caledonia that have benefited from
locally based scientific attention since the 1940s (www.ird.
fr/nouvelle-caledonie).

10.3.14 Conclusions

Coral reef biodiversity expands in a multitude of dimensions
associated with the various scientific disciplines and metrics
used to characterize the variability of life forms across scales
of biological and ecological organization. While biodiversity
metrics are known to differ among regions, declining with
distance from the center of marine biodiversity in Southeast
Asia, our synthesis highlights how they also vary with the
size of coral reef systems and the extent of habitats and
diversity of ecological niches they provide. The exploration
of coral reef biodiversity is a challenging endeavor that con-
centrates the efforts of an active global research community,
as many knowledge gaps remain with significant unbalance
between scientific disciplines and regions, alongside the
decline in biodiversity levels, with life forms disappearing
before they are characterized. In the face of the current bio-
diversity crisis, our knowledge of coral reef biodiversity
appears quite superficial compared to the in-depth under-
standing needed to anticipate, detect, and counter ecological
declines. This entails new research avenues, particularly
transdisciplinary approaches to bridge our understanding of
biological, ecological, and biogeoclimatic processes across
scales of bioecological organization, endeavors that remain
largely insufficient to comprehend the mechanisms behind
biodiversity production and maintenance and safeguard their
future (Jones et al. 2015; Smallegange et al. 2017; Carturan
et al. 2020; Condie et al. 2021; Ouédraogo et al. 2021; Van
Woesik et al. 2022; Carlot et al. 2023; Ouédraogo et al.
2023). Unanswered questions critical to human survival
throughout the twenty-first century pertain to the carrying
capacity of ecological systems and the effectiveness of soci-
etal paths toward sustainability. Due to their unique biodiver-
sity and associated level of scientific attention, coral reef
systems can be key to addressing these questions. In the
global landscape of coral reef biodiversity, French tropical
overseas are major players in this realm, thanks to their
unique distribution, coverage, and a robust management and
research network supported by the public system
(Cocquempot et al. 2019). This unique combination provides
a large set of data-rich systems that allow exploration of how
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biodiversity takes form at different scales of bioecological
organization and interacts with human and climatic environ-
ments. While coral reef biodiversity has received increased
national and international attention, restrictions in scientific
research funding remain a primary impediment to advance
understanding and hence conservation of biodiversity in
coral reefs and globally (Huang and Huang 2018;
Thirukanthan et al. 2023).
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