

Snapshots of Coral Reef Biodiversity

10

Félix Pellerin, Diane Espel, Jane Ballard, Jessica Salaün, Ehsan Kayal, Mayalen Zubia, Grégory Lasne, Michel Pichon, Pauline Bosserelle, Julien Wickel, Claire Garrigue, Yves Letourneur, Mehdi Adjeroud, François Guilhaumon, Véronique Berteaux-Lecellier, Gaël Lecellier, Mireille M. M. Guillaume, Malika René-Trouillefou, Clémence Gatti Howell, Thierry Jauffrais, and Mohsen Kayal

Abstract

Coral reefs are sanctuaries for a large portion of our planet's biodiversity, but their rapid decline begs critical questions about what exactly is being lost, what driving forces determine decline or resilience, and what implications for life on Earth. To help address these questions, this chapter synthesizes the state of knowledge on the diversity of coral reef life forms at different scales of biological and ecological organization, encompassing variability in

Synopsis

This chapter provides a holistic vision of coral reef biodiversity across vast scales of biological and ecological organization, from genes and molecules to ecosystems and their geoclimatic and social environments. We compare biodiversity metrics among key ecological communities and regions as we synthesize the current state of knowledge on coral reef biodiversity, pinpoint important knowledge gaps, and identify prospective research.

genes, biomolecules, cells, organs, organisms, populations, communities, ecosystems, socio-ecosystems, and biogeoclimatic systems, with a particular focus on French tropical overseas. We discuss research pathways to address knowledge gaps in various scientific disciplines, covering genetics (genomics, transcriptomics, proteomics, metabolomics), morphology, ethology, bioacoustics, demography, functional ecology, macro-ecology, landscape ecology, human and social sciences, bioclimatology, and their cross-disciplinary interactions. Based on contributions from coral reef experts working in different coral reef regions around the world, our synthesis supports a better understanding of the various dimensions of coral reef biodiversity and proposes future research orientations for improving knowledge and conservation. Given the rapid disappearance of coral reefs and how much is still unknown, this chapter underscores

F. Pellerin · M. Adjeroud

Laboratoire d'Excellence CORAIL, Paris, France

USR 3278 CRIOBE, PSL Université Paris, EPHE-UPVD-CNRS, Perpignan, France

UMR 250 ENTROPIE, IRD-IFREMER-CNRS-University of Reunion-University of New Caledonia, Nouméa, New Caledonia

D. Espel

UMR 250 ENTROPIE, IRD-IFREMER-CNRS-University of Reunion-University of New Caledonia, Nouméa, New Caledonia

CNRS, ECOBIO, UMR 6553, University of Rennes, Rennes, France

J. Ballard

Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands, Arles, France J. Salaün

Laboratoire d'Excellence CORAIL, Paris, France

USR 3278 CRIOBE, PSL Université Paris, EPHE-UPVD-CNRS, Perpignan, France

E. Kayal

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA

M. Zubia

Laboratoire d'Excellence CORAIL, Paris, France

University of French Polynesia, UMR-241-SECOPOL (ILM, Ifremer, IRD), Campus Outumaoro, Tahiti, French Polynesia

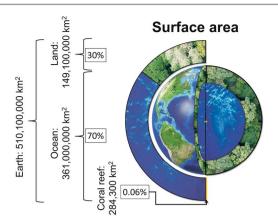
G. Lasne

Biocénose marine SARL, BP 8229, 98807 Nouméa cedex, Nouméa, New Caledonia

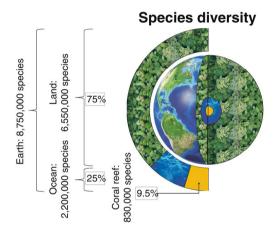
M. Pichon

Biodiversity and Geosciences Program, Queensland Museum, Townsville, QLD, Australia

the urgency of cross-scale biodiversity assessments for a systemic understanding of the distribution and dynamics of biodiversity.


Keywords

Systems science \cdot Biodiversity distribution \cdot Collaborative cross-system research \cdot Coral reef management \cdot Sustainability


10.1 Introduction

10.1.1 Coral Reefs in the Twenty-First Century

Coral reefs are arguably the most biodiverse and productive ecosystems on Earth (Fig. 10.1). They host an estimated 38% of all marine species (Fisher et al. 2015) and contribute fundamental benefits to humanity and the natural world Moberg and Folke 1999; Speers et al. 2016 Woodhead et al. 2019; Carlot et al. 2023) despite making up a mere 0.08% of the ocean floor (Smith 1978), or 0.17% including associated lagoonal habitats (Spalding et al. 2001), and lying in tropical waters that are poor in nutrients (de Goeij et al. 2013). However, coral reefs are declining due to the high vulnerability of several of their ecologically key functional groups to human-driven and climatic stressors (Brandl et al. 2019a; IPBES 2019; Calvin et al. 2023). In particular, unsustainable rapid growth in coastal development, pollution, fishing, and climate change are increasingly reducing the regeneration of reef habitats by their slow-growing foundational species, the calcifying corals, and altering the capacity of the food webs to preserve their functional equilibrium (Fig. 10.2; Vajed Samiei et al. 2015; Hoegh-Guldberg et al. 2017; Hughes

Coral reef = 0.08% of Ocean surface area

Coral reef = ~38% of marine species

Fig. 10.1 Coral reef contributions in terms of surface area and species diversity, based on total species number estimates according to Mora et al. (2011) and Fisher et al. (2015)

P. Bosserelle

Consultante indépendante en écologie récifale, Papeete, French Polynesia

J. Wickel

GIE MAREX – Marine Expertise Company, Piton Saint Leu, Reunion

C. Garrigue · Y. Letourneur · F. Guilhaumon · T. Jauffrais Laboratoire d'Excellence CORAIL, Paris, France

UMR 250 ENTROPIE, IRD-IFREMER-CNRS-University of Reunion-University of New Caledonia, Nouméa, New Caledonia

V. Berteaux-Lecellier Laboratoire d'Excellence CORAIL, Paris, France

EMR 9001 SantEco – UMR 250 ENTROPIE, IRD-CNRS-University of Reunion-University of New Caledonia, Nouméa, New Caledonia G. Lecellier

Laboratoire d'Excellence CORAIL, Paris, France

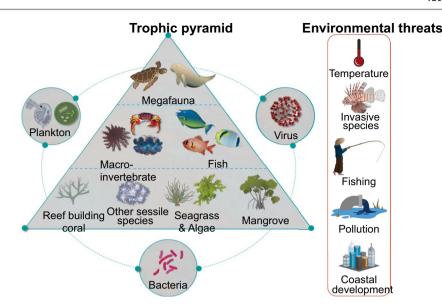
ISEA EA 7484, University of New Caledonia, Noumea, New Caledonia

M. M. M. Guillaume · M. René-Trouillefou Laboratoire d'Excellence CORAIL, Paris, France

UMR 8UMR 8067 BOREA, Muséum National d'Histoire Naturelle, SU, CNRS, IRD, UA, Aviv, Paris, France

C. G. Howell

Institut Louis Malardé (ILM), UMR 241-SECOPOL (IFREMER, ILM, IRD, UPF), Laboratory of Marine Biotoxins, Papeete, Tahiti, French Polynesia


M. Kayal (⊠)

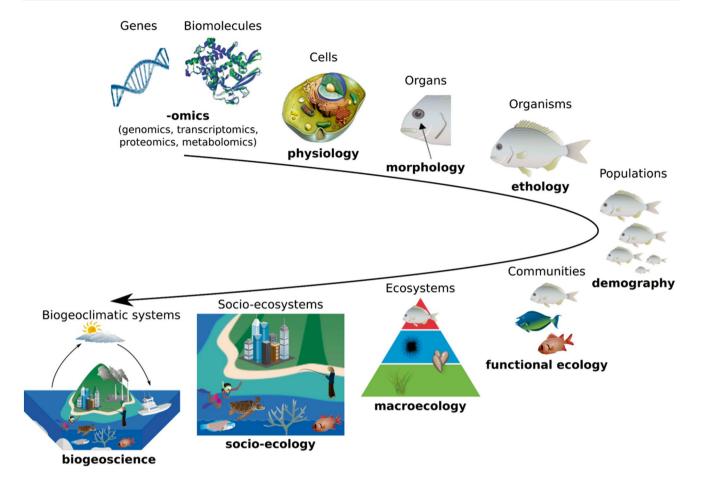
Laboratoire d'Excellence CORAIL, Paris, France

UMR 250 ENTROPIE, IRD-IFREMER-CNRS-University of Reunion-University of New Caledonia, Nouméa, New Caledonia

Station Marine d'Endoume, Marseille, France e-mail: mohsen.kayal@ird.fr

Fig. 10.2 Key ecological communities of coral reef ecosystems and associated seagrass and algae beds, mangrove forests, and sandy lagoonal plains. The communities are organized in a trophic pyramid, with species occupying distinct ecological niches and contributing a set of ecological functions that enable ecosystem functionality in a state of relative stability. Environmental stressors alter species abundances, threatening the equilibrium and functionality of the system

et al. 2018; Quattrini et al. 2020; Ouédraogo et al. 2021, 2023; Andrello et al. 2022). In many places, eutrophication and overfishing have reduced the capacity of herbivores to control algae communities, leading to major ecosystem shifts (Hughes et al. 2017; Schmitt et al. 2019). The widespread decline of coral reefs and consequently of the benefits they provide to society has made coral reef conservation a societal priority in many regions and a major target for humanity globally (IPBES 2019; Maxwell et al. 2020; Eddy et al. 2021). Within these efforts and in the larger scope of knowledge and conservation of the Earth's biodiversity, it is fundamental to comprehend the extent to which coral reefs contribute to biodiversity, biodiversity distribution in relation to coral reef conditions and human influences, and the consequences of coral reef decline for marine life and humanity. To begin, what exactly is coral reef biodiversity?


10.1.2 What Is Biodiversity?

Biodiversity is defined as the variability of life forms. Despite the simplicity of the concept, biodiversity remains a major scientific mystery, as variability of life is found at a multitude of biological and ecological scales, from the very small to the very large (Fig. 10.3). In longer terms, as defined by Article 2 of the Convention on Biological Diversity (www.cbd.int): "biological diversity means the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems." In fact, variability of life is characterized in as many dimensions as there are metrics to assess, resulting in a plethora of biodiversity measurements and

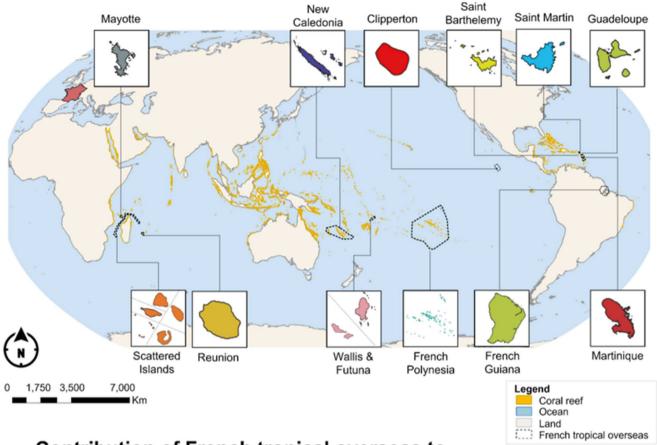
disciplinary sub-definitions. While this fractal nature of biodiversity measurements has complexified interdisciplinary interactions, biodiversity assessments remain largely incomplete, as most existing metrics have not yet reached a final estimate and biodiversity metrics continue to increase with the development of new scientific tools and disciplines (Caley et al. 2014; Guerra et al. 2020; Galand et al. 2023. Overall, a global evaluation of Earth's biodiversity is necessary for a better understanding of the organization of life on our planet and the consequences of the biological losses it suffers (Costello et al. 2013; IPBES 2019; Bradshaw et al. 2021). As sanctuaries for a large portion of marine biodiversity, coral reefs are a good place to begin this endeavor.

10.1.3 Objectives of the Chapter

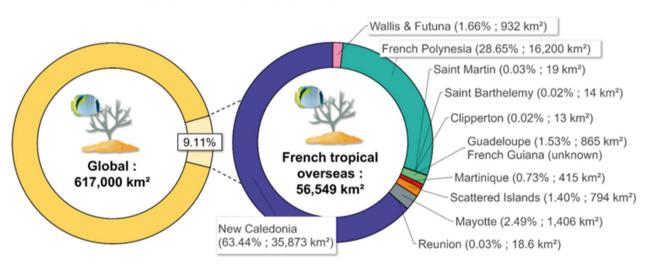
Using contributions from a team of coral reef experts working in different coral reef ecoregions around the world, we compile information from various scientific disciplines of biology and environmental sciences to synthesize knowledge on major metrics of coral reef biodiversity at different scales of biological (i.e., relating to organisms) and ecological organization (i.e., relating to interactions among organisms and with their environments), from genes to ecosystems and their natural and human-associated environments (Fig. 10.3). We evaluate differences among key coral reef biological communities and geographical regions, identify major knowledge gaps, and discuss prospective research. Our synthesis provides an understanding of the various dimensions in which coral reef biodiversity takes form and highlights future research for improving our knowledge of nature and its preservation.

Fig. 10.3 Hierarchical organization of the living, from genes to biogeoclimatic systems, from which biodiversity is the result of variabilities at the different scales. Text indicates the different scales of

biological and ecological organization (top) and the corresponding scientific disciplines (bottom)


10.2 Methods

We have leveraged the coral reef expertise of the French Laboratory of Excellence LabEx CORAIL network across 12 French tropical overseas localities situated in the Caribbean, Indian, and Pacific regions (Fig. 10.4). This represents ~5% of the world's constructed hard-substrate reefs, ~9% of all coral reef surface area when including associated sandy lagoonal habitats, and encompasses 46° of latitude (18°N–28°S) and all major coral reef basins (Smith 1978; Spalding et al. 2001; Andréfouët et al. 2008).


We characterize coral reef biodiversity at the different scales of biological and ecological organization, from genes to biogeoclimatic systems, by compiling quantitative metrics from the various scientific disciplines (Fig. 10.3) for different coral reef biological communities and regions (Fig. 10.4). Our focus is on major biological groups considered as key ecological compartments of coral reef ecosystems, including reef-building corals and other sessile animals (soft-corals, sponges, ascidians, bryozoans), micro- and macroalgae, vag-

ile invertebrates (crustaceans, mollusks, echinoderms, annelids, platyhelminthes, sipunculid worms, hemichordates), fish (actinopterygians, elasmobranchii), megafauna (sea turtles, dugongs, dolphins, whales, sharks and rays, sea snakes), bacteria, and viruses (Fig. 10.2). Data on seagrasses, mangroves, and sandy lagoonal plains are also integrated as adjacent ecosystems with species distributions that often overlap with coral reef habitats (Moberg and Folke 1999; Andréfouët et al. 2008; Guannel et al. 2016). Environmental data consists of metrics characterizing the geologic, climatic, and societal aspects of the coral reef systems.

Biodiversity data is gathered thanks to the contribution of experts from various disciplines and regions, complemented with data obtained from literature and global databases. Particular attention has been given to the most documented and commonly used biodiversity metrics, and those viewed as essential biodiversity variables (https://geobon.org/ebvs/; Pereira et al. 2013). Experts have also been asked to identify major knowledge gaps and prospective research to address them.

Contribution of French tropical overseas to coral reef surface area

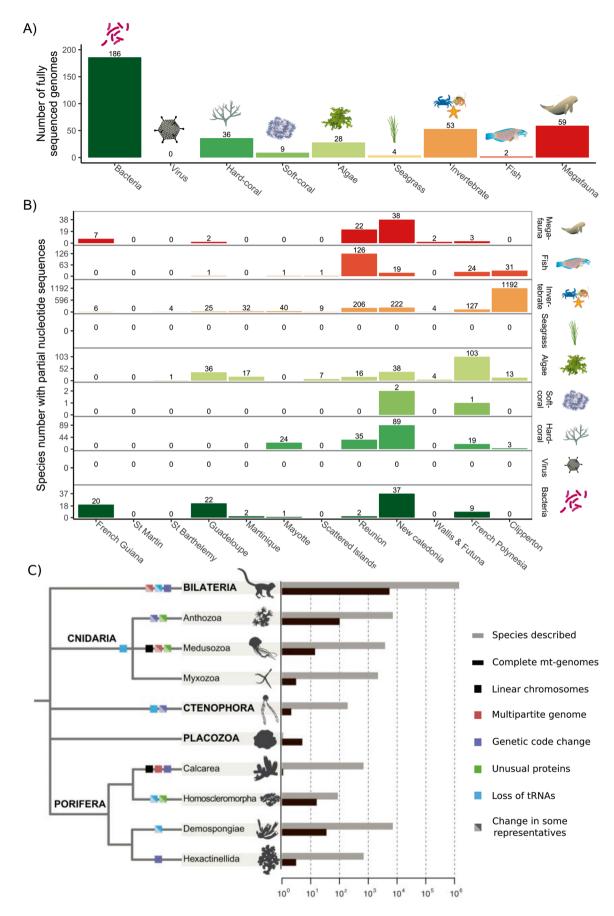
Fig. 10.4 Map of the world's coral reefs and contributions of French tropical overseas. Coral reef surface areas account for constructed hard reef and sandy lagoonal plain habitats (cf. Spalding et al. 2001)

All maps and graphics have been produced using the R software environment (R v4.2.3, R Core Team 2023) complemented with the "ade4," "stringr," "ggplot2," "png," "RcolorBrewer," and "Cowplot" packages. Graphics are complemented with iconography from https://ian.umces.edu and https://biorender.com.

10.3 Results and Discussion

10.3.1 On the Challenge of Assessing Coral Reef Biodiversity

Ouantifying biodiversity is a daunting exercise given the colossal task of considering the various scales of biological and ecological organization through the lenses of different scientific tools and disciplines (Fig. 10.3), particularly as most are in their infancy and none have achieved a finite estimate of biodiversity (Costello et al. 2013; Caley et al. 2014; Guerra et al. 2020; Galand et al. 2023). Nevertheless, estimating biodiversity is a necessity for humanity when rapid biodiversity loss is a global reality with irrevocable consequences for life on Earth (Kayal et al. 2019; IPBES 2019; Calvin et al. 2023). Due to their central role in hosting a large portion of the world's biodiversity and their vulnerability to collapse, coral reefs are certainly a good focus point for this endeavor. The following sections synthesize coral reef biodiversity based on a multitude of metrics that characterize variability of coral reef systems at various biological and ecological scales, providing a snapshot of the work in progress.


10.3.2 Genes

Unknown until recent times, the birth of molecular biology in the 1950s opened paths to a fascinating new vision of how biological features are controlled by inheritable biological units, otherwise known as genes, organized in long sequences of deoxyribonucleic acid, or DNA (Gayon 2016). This revelation confirmed early work by Mendel (1865) on biological inheritance. Since, genetic investigation has been in constant acceleration, with the development of new tools and techniques providing means to deepen our exploration of biological diversity at the level of genomes. Despite significant increases in the number of studies in recent years, the genetic exploration of coral reef ecosystems remains in its infancy. Genomic resources have been developed for some model species within different ecological communities (Fig. 10.5), providing various metrics for measuring genetic diversity within and among taxa, including length, composition, and organization of coding and noncoding sequences (Fig. 10.6) and their degree of similarity between different evolutionary

paths (Fig. 10.7). These metrics can be accessed at the DNA and RNA levels, the latter also providing functional information in the form of gene expression data (transcriptomics). Such studies are particularly relevant to ecological investigations of species responses to environmental changes and other forms of selective pressure (Gingeras 2007; Fuller et al. 2020; Nielsen et al. 2020; Levy et al. 2021).

Increasing availability of genetic data has enabled exploring genetic variation at the population and meta-population levels (e.g., heterozygosity, parentage analysis, introgression, demographic connectivity) and across species distribution ranges (i.e., phylogeography) in key organisms of ecological or scientific importance. This also contributes ecological knowledge regarding population connectivity and regeneration capacity, and species origination and dispersal, therefore supporting biodiversity conservation (Baums 2008; Cowman and Bellwood 2013; Edmunds et al. 2016; Siqueira et al. 2019; Dubé et al. 2020; Swain et al. 2021; Cantalice et al. 2022). Exploring both the spatial and temporal nature of genetic variation is paramount to identifying genetic diversity hotspots and the mechanisms underlying adaptation to changing environments, a field that necessitates further investigation (Fig. 10.5). New approaches combining genetic exploration with descriptors of environmental condition and biodiversity at larger scales of bioecological organization will help in this endeavor (Nielsen et al. 2020; Selmoni et al. 2020; Manel et al. 2020; Bongaerts et al. 2021).

By enabling species identification based on short signature sequences, barcoding data represents the prevalent and accessible form of genetic resource, particularly useful for accessing hidden communities such as bacteria, viruses, symbionts, and cryptic organisms using environmental-DNA (eDNA) approaches (Robbins et al. 2021; Galand et al. 2023). GenBank (www.ncbi.nlm.nih.gov/genbank/) is the main public repository of genetic data in the public sphere (Leray et al. 2019), though project-specific datasets are also available. Recent decreases in the cost of sequencing have led to a sharp increase in shallow genomic surveys. Lowcoverage DNA sequencing provides access to complete organellar genomes as these small molecules are often present in several thousands of copies compared to the larger nuclear genomes present as a single copy per cell. Mitochondrial DNA (mtDNA) data is a favorite molecular tool for the study of species diversity in animals (e.g., Shinzato et al. 2021), whereas chloroplast DNA (cpDNA) data is preferably used in plants and algae, mainly owing to differing rates of sequence evolution in these organisms. In addition to sequence data, complete organelle genomes provide morphological characters in the form of genome organization and molecular conformation, providing insights into genetic expression (Fig. 10.7; Kayal et al. 2012a, b, 2015a, b; Lavrov and Pett 2016).

Fig. 10.5 Number of coral reef-associated species with characterized whole-genome sequences (**a**), number of species with available partial DNA sequences across French tropical overseas (**b**), and number of

described species and complete mitochondrial genomes per group (c). Data from GenBank (a, b) and from Lavrov and Pett 2016 (c)

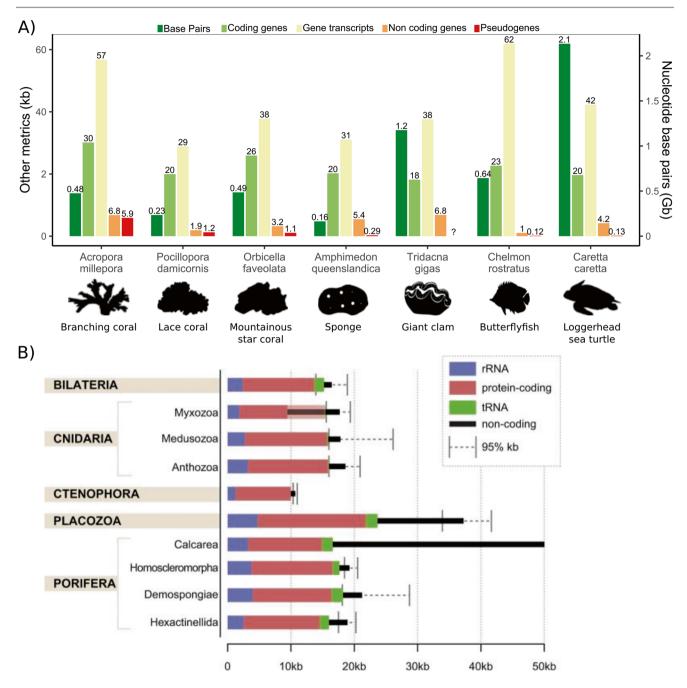
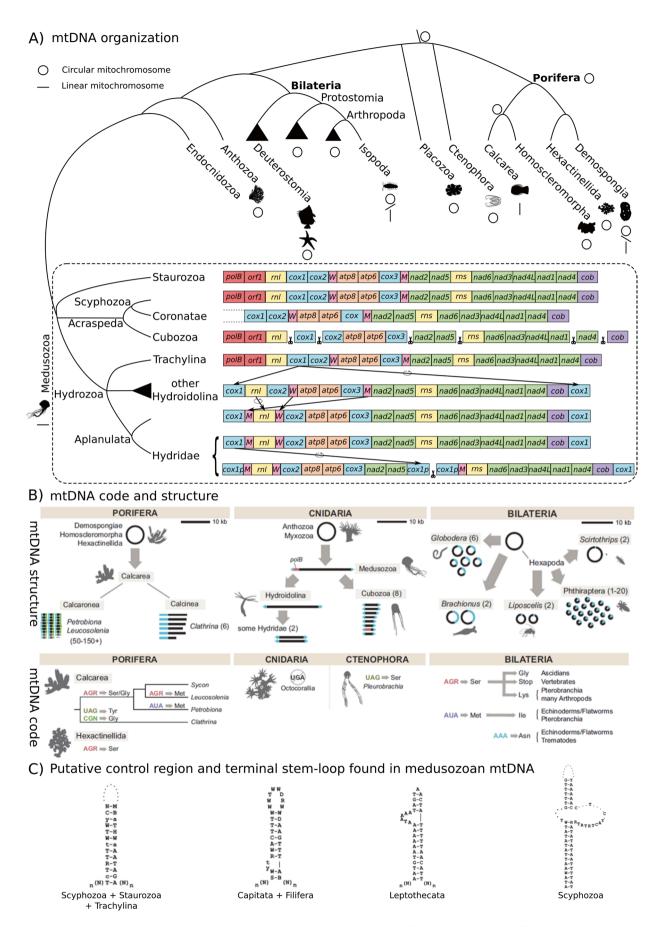



Fig. 10.6 Differences in nuclear (a, data from https://rapid.ensembl.org) and mitochondrial (b, from Lavrov and Pett 2016) genome size among key coral reef species groups

The taxonomic diversity of coral reefs makes them ideal laboratories for exploring evolutionary patterns in living organisms. Taxonomic comparisons indicate a high level of diversity in genome size, composition, and structural organization, with no apparent relationship between genome complexities and species evolutionary positions (Fig. 10.6), although similarity between genetic sequences decreases with increasing evolutionary distance (Ciccarelli et al. 2006). However, genetic characterization of several branches of the

tree of life, including major animal clades such as Porifera, Bryozoa, and Platyhelminthes, remains scarce even in barcode libraries (Mugnai et al. 2021). Such paucity of genetic information is typical of marine, compared to land, ecosystems, impeding large-scale comparisons of genetic and genomic diversity among coral reefs (Fig. 10.5). Crossregional initiatives such as the recent Tara Pacific campaigns contribute greatly to remedy such shortcomings (Planes and Allemand 2023).

Fig. 10.7 Evolution of mitochondrial DNA (mtDNA) in reef-associated animals with zoom on Medusozoa. Differences in mtDNA result from linearization, fragmentation, gene rearrangement, and

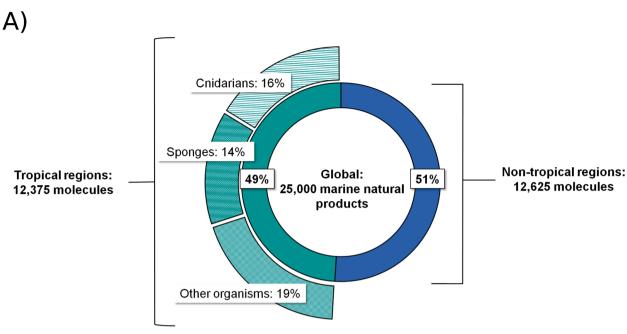
changes in coding sequences, which affect DNA molecular structure and the level of genetic expression. (Adapted from Kayal et al. (2012a, b) and Lavrov and Pett (2016))

10.3.3 Biomolecules

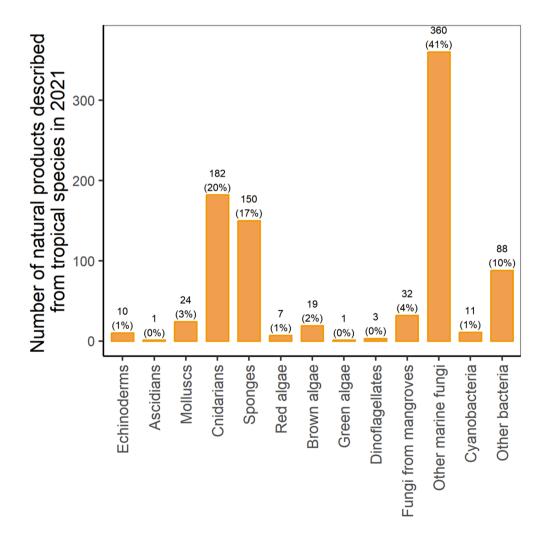
Coral reefs are host to a high diversity of molecular compounds, most of which are still uncharacterized, released by their myriad of local inhabitants. MarinLit (https://marinlit. rsc.org) is a major database that documents the diversity of biomolecules of marine origin with medicinal and engineering potentials. Among the ~25,000 marine natural products registered in this database in 2019, a large proportion originates from reef-associated organisms, particularly sponges (33%) and cnidarians (28%) (Fig. 10.8; Carroll et al. 2019). These numbers increase rapidly, with ~1400 new marine biomolecules being described each year, a majority (888 in 2021) originating from tropical regions and sponges and cnidarians (37% in 2021; Carroll et al. 2023). This natural wealth is of particular interest to biopharmaceutical and biotech industries using the bioactive chemicals as cytotoxic, anticancer, pain relief, and antifouling products (Ghareeb et al. 2020; Gomez-Banderas 2022; Wegley Kelly et al. 2022). Research in this field benefits from the attention of active industries and international groups and is likely to uncover many more potential uses as screening of coral reef compounds for natural products continues, notably on less emblematic and cryptic organisms that understudied.

By investigating proteins and other small molecules present in organisms and their environments, proteomic and metabolomic approaches provide an additional layer of complexity to molecular biodiversity exploration (Jiang et al. 2021). While regulation of macroalgae is failing on many reefs due to eutrophication and declines in herbivory (Hughes et al. 2017), exploitation of macroalgae can provide a large source for biomaterials and constitute a win-win for humans and ecosystems alike in a time when the sustainable exploitation of ocean resources (i.e., blue economy) is in full expansion (Urban Jr and Ittekkot 2022). Indeed, coral reef macroalgae offer a huge and attractive potential for developing new drugs and biomaterials, an area that is expected to increase with the development of macroalgal farms, especially in French tropical overseas (Stiger-Pouvreau and Zubia 2020).

10.3.4 Cells

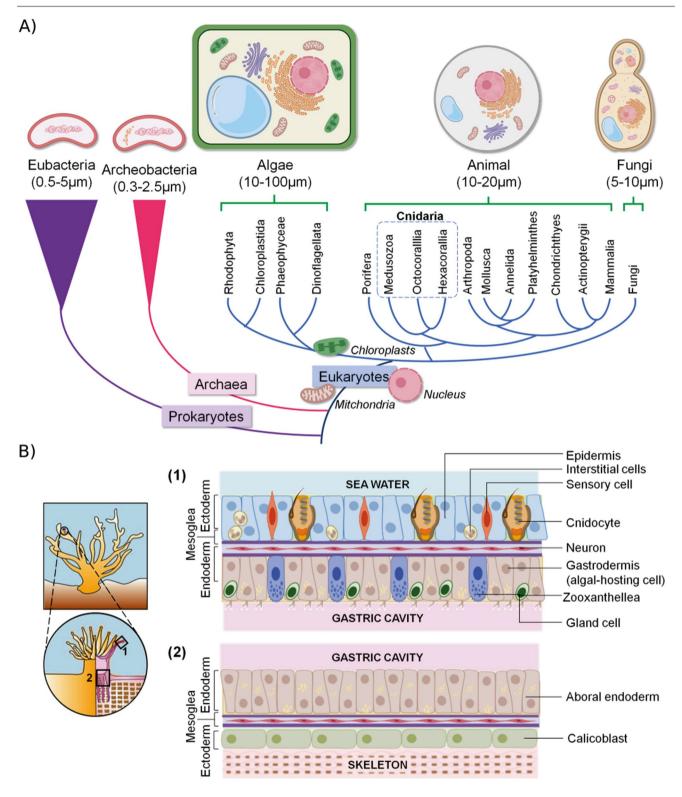

Variability in cell organization is a major feature of evolutionary biology, with the acquisition of cellular membranes and organelles being determinant in the development and diversification of life López-García and Moreira 2023). The large diversity in cell structure and organization found in coral reefs reflects that of taxonomic groups from various portions of the phylogenetic tree, ranging from the most basic virus and simpler prokaryotic cells to the most com-

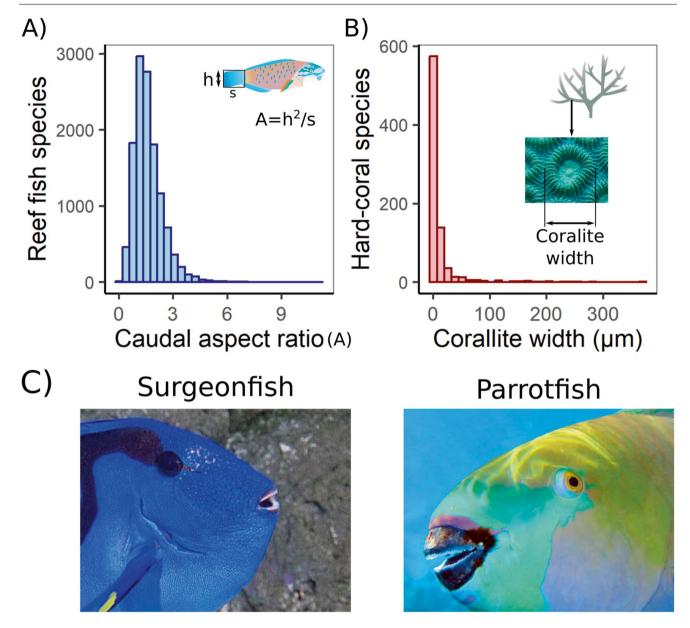
posite cells endowed with complex membranes and organelles acquired through symbiotic associations (Fig. 10.9a). The evolution of multicellularity has enabled cell specialization and the development of organs, leading to a diversification of cell features and functions within organisms (Fig. 10.9b). For instance, one species of reef-building coral harbors 40 different cell types throughout its life cycle (Levy et al. 2021). Such cell diversification confers niche extension and competitive advantage to organisms, influencing biodiversity patterns at higher levels of bioecological organization (population, community).


Cell diversity can reach its paroxysm in symbiotic (paired living beings) and holobiontic (multiple living beings functioning as a unit) organisms, such as reef-building corals finding mutual benefits between heterotrophy in animals and autotrophy in plants to colonize oligotrophic waters (Fig. 10.9b; Jiang et al. 2021). Physiological studies on coral reef species have specifically focused on key metabolic functions, such as respiration, photosynthesis, and calcification, to assess species performances under various environmental conditions, providing insights into their capacity to survive future reef conditions (Vajed Samiei et al. 2015; Hoegh-Guldberg et al. 2017; Andrello et al. 2022). Recent development in genomics, transcriptomics, and proteomics methods enables the exploration of new cell types and functions, providing further insights into the physiological functioning of cells and organisms (Konopka and Wilkins 2012; Levy et al. 2021). New approaches in meta-"omics" (e.g., metagenomics, meta-transcriptomics, meta-proteomics) applied through the lens of the holobiont concept shed light on the hidden functional and cellular diversity of complex marine ecosystems. In fact, marine holobionts are an emerging field of research that shows promising outcomes for our understanding of coral reefs and other ecosystems (Dittami et al. 2021). For instance, monitoring of marine holobionts can provide clues into environmental stressors while providing explanatory mechanisms for adaptation to changing climate (González-Pech et al. 2023). Such knowledge can in turn be used in hierarchical, multi-scale quantitative approaches to bridge the gap to higher bioecological levels such as populations, communities, and ecosystems (Edmunds et al. 2014; Smallegange et al. 2017; Condie et al. 2018; Dubois et al. 2019; Carturan et al. 2020; Morais and Bellwood 2020).

10.3.5 Organs

The diversity of organ shapes and functions was a foundation for Charles Darwin's work on species evolution (Darwin 1859). Work in this realm has paid particular attention to the diversity of key functional organs and transmission of their characters throughout evolutionary pathways, including locomotion, sensory, communication, and reproductive




Fig. 10.8 Diversity of biomolecules associated with coral reef species. (a) Proportion of marine natural products associated with tropical reef organisms recorded in the MarinLit database in 2019 and (b) number of

natural marine products described in 2021 extracted from tropical species. (Data from Carroll et al. (2019, 2023))

198 F. Pellerin et al.

Fig. 10.9 Cell diversity across the tree of life and coral reef organisms. (a) Diversity in cell structures and organelles composition. (b) Cell specialization in reef-building corals. (Adapted from Boilard et al. 2020; Levy et al. 2021)

Fig. 10.10 Examples of organ diversity in coral reef species. (a) Variability in the shape of reef fish tails (caudal aspect ratio A) as an indicator of species levels of activity and swimming speeds (Pauly

1989). (b) Variability in the size of reef-building coral corallites. (c) Mouth specialization in herbivorous surgeonfish and microphage parrotfish. (Data from www.fishbase.se and McWilliam et al. (2018))

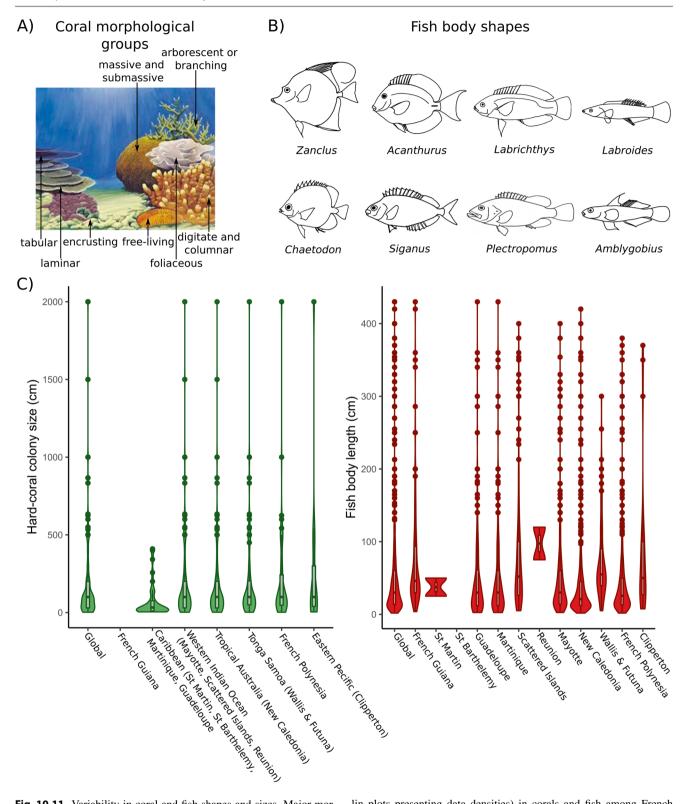
organs, although often without a specific focus on coral reef species Cernuda-Cernuda and García-Fernández 1996 Maruska 2001 Gregory 2008, Flammang 2014Fine and Parmentier 2015 Majoris et al. 2021. More focused are studies on species biological traits, which typically rely on organism- and organ-level characteristics for species identification and ecological comparisons (Fig. 10.10). Such information is recorded in reference databases such as https://coraltraits.org and www.fishbase.se. While analyses of organ variabilities are scarce, the most common metrics are found for organs used for ecological investigation such as fish otoliths and scales, mineral bodies of the inner ear and surface layer

that are used for sclerochronologic estimations of organism age, and ontologic investigations of diet and life-cycle dynamics (Heather et al. 2018; Morat et al. 2020). Recent advancements in this realm show a similar use of the vertebrate eye lens to explore dietary and spatial variations throughout organisms' lifetime (Quaeck-Davies et al. 2018), an area of exploration also investigated in human dental cementum (Bertrand et al. 2022). Similar investigations are performed on marine plants and invertebrates, although using a different set of organs (Duarte et al. 1994; Rypel et al. 2008; Ouréns et al. 2013). In coral reefs, special attention has been given to the diversity of organs associated with

key ecological functions for ecosystem health, such as the role of parrotfishes whose beaks specialize in particular in scraping algae with cyanobacteria, microorganisms, and invertebrate endosymbionts off substrates as compared to the mouths of surgeonfishes more adapted to grazing (Fig. 10.10c; Clements et al. 2017). Physiological and phylogenetic studies investigate the efficiency of such functions and their ecological role in coral reefs, with particular emphasis on the importance of diversity and redundancy of the functions associated with such organs for ecosystem resilience (Guillemot et al. 2011; Siqueira et al. 2019; Pimiento et al. 2020; Robinson et al. 2020).

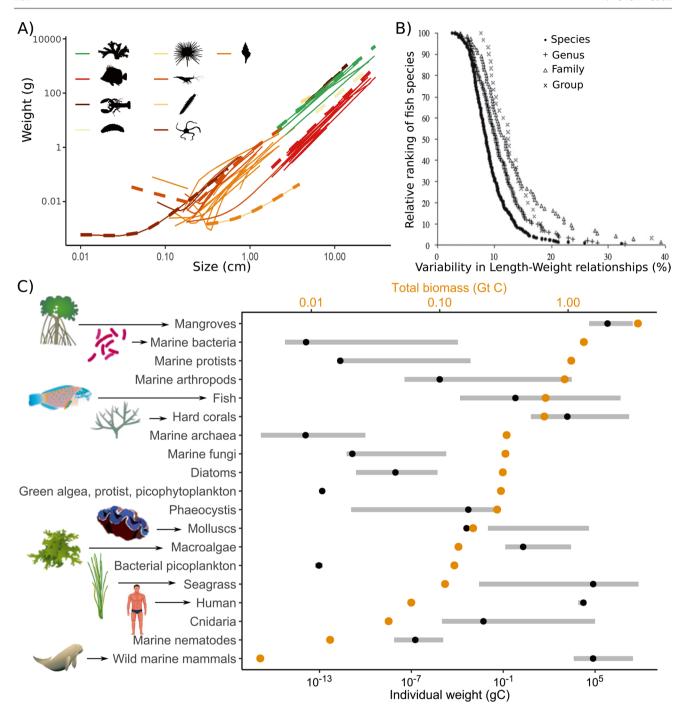
10.3.6 Organisms

Organisms living in coral reefs vary in many aspects, including in their morphometric sizes and shapes (Fig. 10.11), and biological traits of colors and behaviors, resulting in a level of diversity and curiosity of life-forms that is unique to these ecosystems. Global databases describing these characteristics for reef-building corals and fish include https://coraltraits.org and www.fishbase.se.


Variability in the size of organisms relates to differences in species biological traits and also to characteristics intrinsic to individuals (e.g., age) and extrinsic features of their environments (e.g., temperature, food availability). Variability in size is often used as an ecological indicator of species health in given environments, given that body size is easier to measure than age, and is the result of a variety of past demographic processes, such as survival and growth, that are sensitive to environmental conditions, including natural disturbance and human stressors. Body size is also a good descriptor of current species performance capacities in demographic processes that determine the ecological success of populations into the future (Darling et al. 2012; Kayal et al. 2015b; Morais and Bellwood 2020), although other ecological descriptors such as age also play an important role (Rapuano et al. 2023). Typically, the largest individuals are found in the most suitable and less disturbed environments, reflecting species optimal environmental niches and success in ecosystem management (McCook et al. 2010; Cinner et al. 2018; Dietzel et al. 2020).

Body shape is often used for species identification and taxonomic studies on species diversification (Veron 2000; Ramírez-Portilla et al. 2022; Tea et al. 2022), sometimes in relation to species performances in key ecological processes such as fish swimming capacity or wave resistance and light absorption in corals, and the associated energetics (Fig. 10.11a, b; Walker et al. 2013; Madin et al. 2014; Rossi et al. 2018; Cresswell et al. 2020; Kramer et al. 2022; Carlot et al. 2023). A large body of work is particularly dedicated to relating the weight of individual organisms to their body

length for estimations of population biomass, species stock assessments, and ecosystem productivity (Wolfe et al. 2020; Pacey et al. 2023; Tekwa et al. 2023). Using a large sample size of 53,800 specimens from 788 reef species from New Caledonia, Kulbicki et al. (2005) estimated variability in reef fish length-weight relationships to be 9.4% at the species level, 11.4% at the genus level, 13.5% at the family level, and 13.2% within morphological groups (Fig. 10.12b). Based on their analysis of reef fish morphologies, the authors concluded that diversity in fish shapes is constrained by physical limits. There are a dozen major morphological groups in corals and 30 of reef fishes (Fig. 10.11; Veron 2000; Kulbicki et al. 2005). Another major research path focuses on species ecological functions, notably for habitat-forming organisms like corals whose morphologies determine the abundance and diversity of species hosted in their interstices (Darling et al. 2017; Richardson et al. 2017b; Aston et al. 2022).


Diversity in colors is one of the most striking and unique features of (healthy) coral reefs, investigated predominantly in studies on ecosystem health and aesthetics values (Haas et al. 2015; Langlois et al. 2022). Other studies explore the evolutionary and molecular determinants leading to the diversity of colors found on coral reefs, sometimes in relation to jewelry industries, and how some species use colors for communication and camouflage (Marshall 2000; Lemer et al. 2015; Tea et al. 2022). Sometimes, striking colors are indicative of stress, as observed during coral bleaching events (Bollati et al. 2020). However, the mechanisms behind, and consequences of, diversity in colors remain largely to be explored (Hemingson et al. 2019; Hodge et al. 2020).

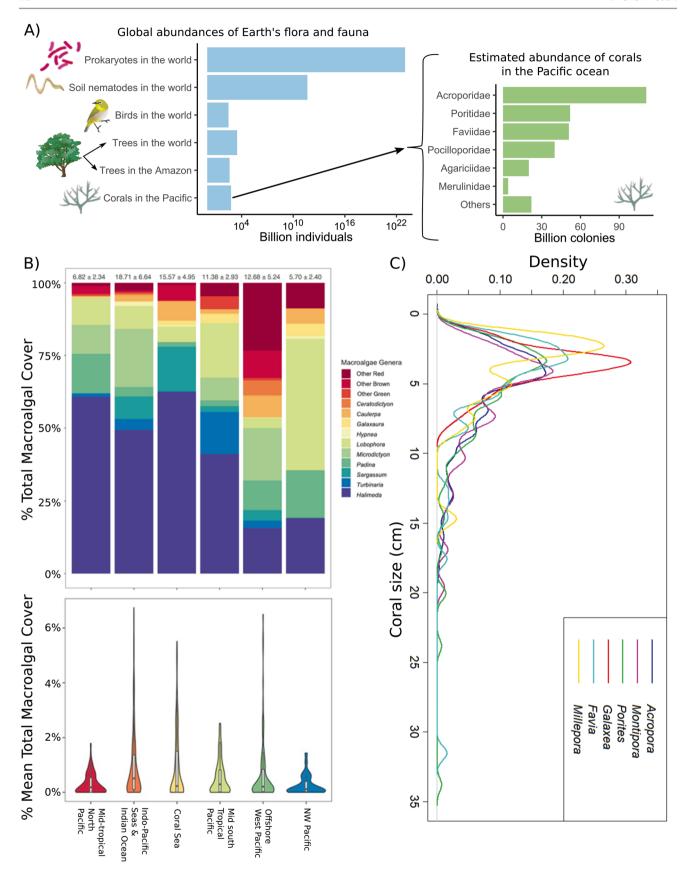
Relatively little knowledge is available about the behaviors of individual organisms, how they adapt to local environments, and change with human influences. Most studies focus on species of interest for their ecological or societal role. A relatively large portion of studies on marine organism behavior focus on large and charismatic animals which are easier to track and are often a center of touristic attraction and, in particular sharks which can also cause human casualties (Juhel et al. 2019; Taglioni et al. 2019; Lassauce et al. 2020; Maillaud et al. 2022; Riley et al. 2022; Séguigne et al. 2023). The studies also explore habitat use, feeding and mating behaviors, and social interactions of the organisms (Papastamatiou et al. 2006; Mourier et al. 2012; Mourier et al. 2013; Mourier et al. 2016; Guillaume and Séret 2021; Lassauce et al. 2022; Lassauce et al. 2023), as well as behavioral sensitivity to human stressors (Holles et al. 2013; Gil et al. 2020; Clark et al. 2020; Udyawer et al. 2021). Another center of interest has been the coral predatory seastar, crownof-thorns starfish (Acanthaster spp.), whose population outbreaks are major causes of coral mortality throughout the Indo-Pacific (Pratchett et al. 2014). The studies have particularly focused on movement and feeding behaviors of the sea-

Fig. 10.11 Variability in coral and fish shapes and sizes. Major morphological groups in corals (**a**, adapted from Veron (2000) and fish (**b**, adapted from Walker et al. (2013). Examples of size distribution (whiskers plots presenting median, first and third quartiles, and outliers; vio-

lin plots presenting data densities) in corals and fish among French tropical overseas (c, data extracted from McWilliam et al. (2018) for corals and from www.fishbase.se for fish)

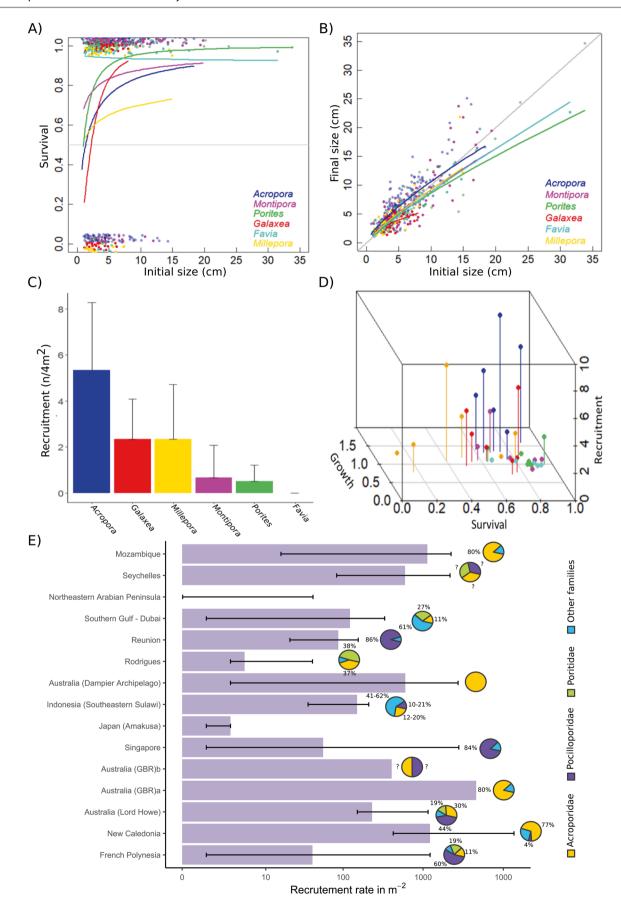
Fig. 10.12 Length-weight relationships (a) of various coral reef organisms by species (solid lines) and species groups (dashed lines), variability in length-weight relationships among species, genera, families, and morphological groups of coral reef fish in New Caledonia (b, adapted from Kulbicki et al. 2005), and individual body weight (range and median) and global biomass of various marine species as compared to humans (c). Length-weight relationship data in (A) from Akiona

et al. (2022) for fish, Pacey et al. (2023) for corals; Wolfe et al. (2020) for Annelida, Mollusca, Arthropoda, and Echinodermata; Lee et al. (2018) for Holothuria; Rahman et al. (2012) for urchins; Aisyah and Triharyuni (2017) for lobsters. Individual body weight and global biomass data in (c) from West et al. (2009), Bar-On et al. (2018), Tekwa et al. (2023)


star as key drivers of coral decline De'ath and Moran 1998; Pratchett 2001; Kayal et al. 2011, 2012b, 2017a, b; Petie et al. 2016; Pratchett et al. 2020) and the identification of its natural predators, which can help mitigate the outbreaks (Bos et al. 2008; Cowan et al. 2017; Kayal and Lenihan 2025), recently with the help of DNA technology (Kroon et al. 2020). Other studies investigated predator-prey, competitive, and mutualistic behavior in different reef organisms (Pratchett 2005; Mills and Côté 2010; Leray et al. 2013; Kayal et al. 2017a; Kayal and Adjeroud 2022). Facing widespread coral reef decline, a large body of work on species behaviors is dedicated to finding solutions for mitigating ecosystem vulnerability to disturbance or boosting recovery through active restoration (Kayal et al. 2011; McKeon and Moore 2014; Kayal and Kayal 2017; Gordon et al. 2019). Sometimes, original studies emerge from unplanned, opportunistic observations of species unusual behaviors, such as bleached corals compensating energy loss by feeding on neighboring macroalgae, and more recently on internal symbiotic microalgae, potentially leading to new investigation channels (Marhaver 2011; Wiedenmann et al. 2023). While the level of plasticity of species behaviors in the face of environmental changes remains largely unquantified, the development and democratization of imagery tools such as underwater cameras and drones have greatly increased research capacity in this realm by enabling increased observations of organisms in their natural environments (Cleguer et al. 2021; Heudier et al. 2023). Further developments in artificial intelligence enable more effective analysis of ecosystem imagery and acoustic recordings for characterizing species attributes and behaviors under various natural and human conditions (González-Rivero et al. 2020; Jamil et al. 2021; Ditria et al. 2022; Ouassine et al. 2024).

10.3.7 Populations

Population abundance estimates are commonly used for stock assessments and evaluations of ecosystem health. Common metrics include population size and distribution range, density, biomass, percent-cover, and size-structure (Fig. 10.13; Adjeroud et al. 2018a, b; Dietzel et al. 2020, 2021; Pacey et al. 2023; Tekwa et al. 2023). In coral reefs as in other ecosystems, many species are often observed at population abundances and size-structures that are near their lower bound (Figs. 10.11c and 10.13), while knowledge on ultimate demographic states achievable by populations and the maximum carrying capacity of ecosystems remains limited (Levin 2000). Nevertheless, comparisons between healthy and altered ecosystem states provide insights on near optimal population abundance, distribution, and sizestructure, and the degree of reduction imposed by various stressors (McCook et al. 2010; Cinner et al. 2018; Darling


et al. 2019; Morais et al. 2021). Amidst rapid environmental change, key research questions focus on population resilience and the capacity of species to maintain their abundance through the demographic processes of survival, growth, reproduction, and migration (Darling et al. 2012; Mumby et al. 2014; Kayal et al. 2015b; Morais and Bellwood 2020). Global databases with information on these processes https://coraltraits.org include and www.fishbase.se. Demographic investigations use empirical measurements of species performances in these processes (Fig. 10.14) to evaluate the diversity of life-history strategies and identify, through quantitative models, the mechanisms leading to population bottlenecks and species ecological success and coexistence in various environments (Madin et al. 2014; Bozec et al. 2016; Kayal et al. 2018; Riegl et al. 2018; Darling et al. 2019; Carturan et al. 2020). While such investigations depend on fine-scale empirical data on species dynamics, data hitherto limited to few highly studied coral reef sites, current developments in imagery approaches are opening paths to their democratization (González-Rivero et al. 2020; Collin et al. 2021; Jamil et al. 2021; Heudier et al. 2023; Kayal et al. 2023). Increased data availability along with amplified computer power has opened paths to pluridisciplinary quantitative investigations for a better understanding of ecosystem processes across biological, ecological, and biogeoclimatic scales (Jones et al. 2015; Condie et al. 2021; Van Woesik et al. 2022; Carlot et al. 2023; Donovan et al. 2023).

As an alternative to comprehensive approaches designed to integrating a multitude of ecological processes driving species dynamics, other investigation routes focus on single indicator processes serving as ecological metrics of species performance and resiliency such as recruitment rates, competitive wars, or recovery capacities (Done et al. 2010; Penin et al. 2010; Osborne et al. 2017; Vercelloni et al. 2019; Kayal and Adjeroud 2022). In particular, coral recruitment is a commonly used, integrated indicator of coral reef resilience capacity, as reflecting both adult coral abundance and reproductive success, and larval dispersal, settlement, and metamorphosis into reef habitats (Adjeroud et al. 2017). It is monitored in different regions using a standardized method quantifying annual settlement rates of coral larvae on artificial substrates (Mundy 2000). Regional comparisons of coral recruitment rates indicate differences in magnitude, taxonomic composition, and seasonality, with maxima observed at mid-latitudinal range in the southwest Pacific, central Great Barrier Reef and southern New Caledonia, where coral communities are dominated by spawning acroporids, with a shift to brooding pocilloporids and spawning poritids in other places (Fig. 10.14e; Hughes et al. 2002a, b; Adjeroud et al. 2017). Quantitative understanding of the coral recruitment process is still nascent but increasing, thanks to dedicated scientific attention (Hughes et al. 2000; Kayal et al.

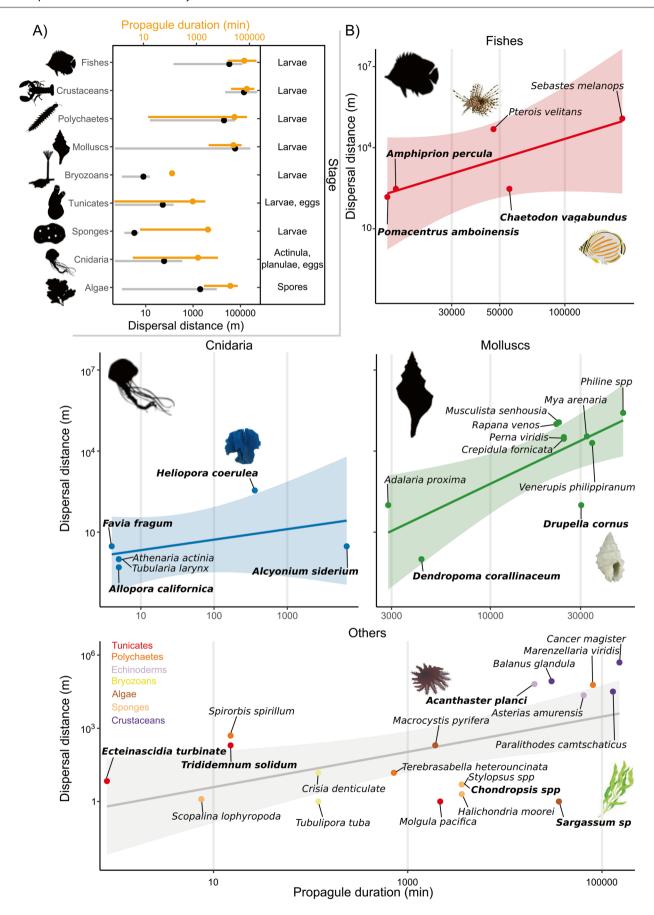
Fig. 10.13 Examples of population state metrics for key coral reef species. Estimated abundance of Pacific reef-building corals as compared to other widespread species (a, data from Dietzel et al. 2021).

Macroalgae cover in the Indo-Pacific (\mathbf{b} , adapted from Cannon et al. 2023). Coral size distribution (\mathbf{c} , adapted from Kayal et al. 2023)

Fig. 10.14 Empirical metrics of coral demographic rates in annual survival (**a**), growth (**b**), and recruitment (**c**), with a visualization of the three processes combined (**d**, adapted from Kayal et al. 2023), and coral

settlement rates on artificial substrates in different regions (e, data from Adjeroud et al. (2022))

2015b; Bramanti and Edmunds 2016; Doropoulos et al. 2016; Leinbach et al. 2021; Doropoulos et al. 2022). The rise of genetic tools and oceanographic modeling of currents enable estimations of population connectivity in various coral reef species, which exhibit various larval durations and dispersal capabilities (Fig. 10.15; Lester and Ruttenberg 2005; Shanks 2009; Cuif et al. 2014; Cravatte et al. 2015; Edmunds et al. 2016; Hock et al. 2017; Dubé et al. 2020; Lesturgie et al. 2023). Overall, a variety of approaches are deployed to investigate the importance of larval recruitment in the replenishment of coral reef species populations and ecosystem functioning, with direct benefits to biodiversity management and spatial conservation planning (Kayal et al. 2018; Riegl et al. 2018; Brandl et al. 2019b; Manel et al. 2019).


10.3.8 Communities

The number of different species composing a biological community is the most historical and common metric of biodiversity (historically "biological diversity"; Harris 1916). Studies at this scale of observation can be distinguished into two major groups, those focused on taxonomic diversity with the end goal of characterizing community composition and those with an ecological endeavor evaluating changes in community composition and their consequences for ecosystems.

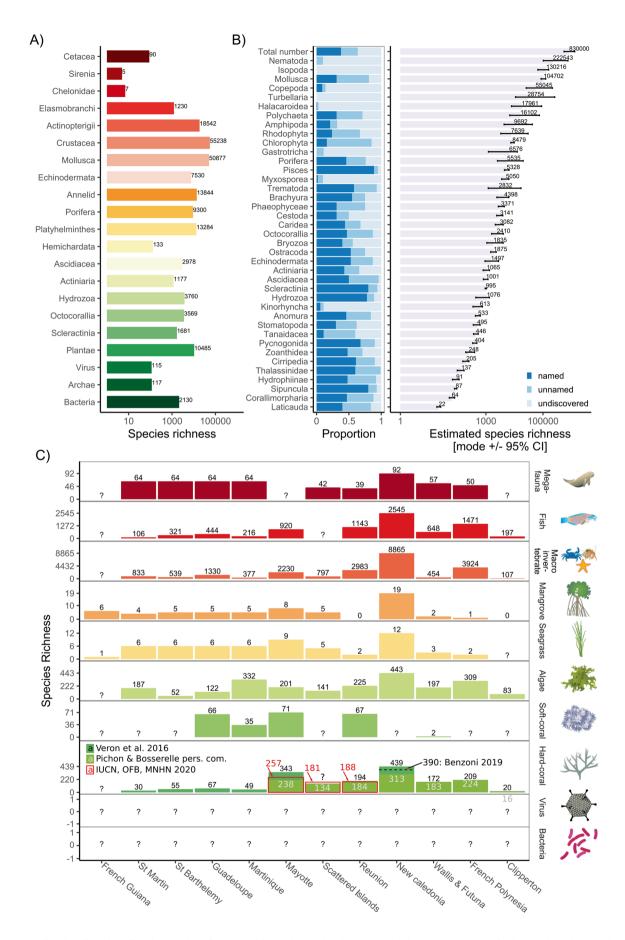
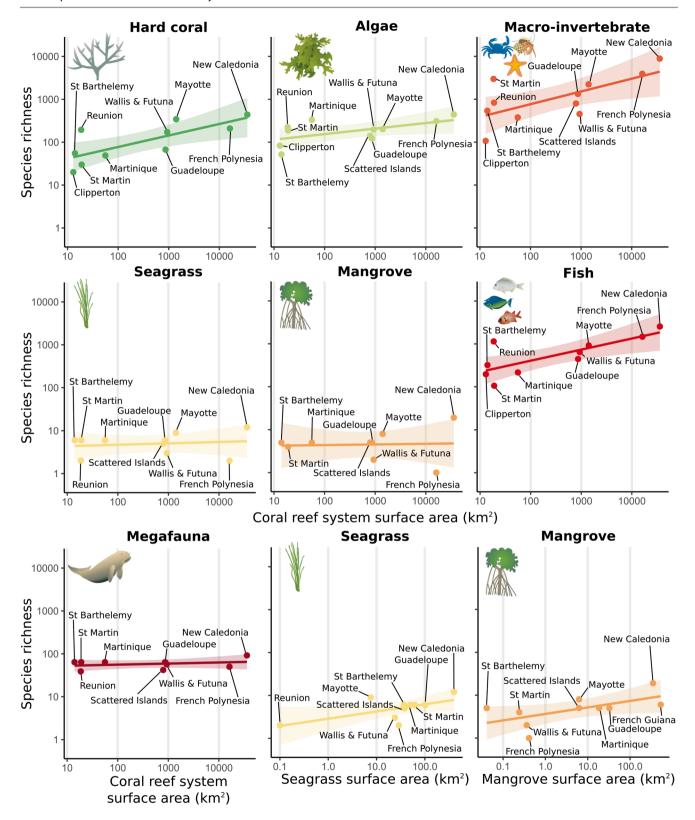
Coral reefs are estimated to host over 2 billion species, including ~830,000 (confidence interval 550,000–1,300,000) multicellular taxa, that is, ~38% of all described marine species (Fig. 10.16; Fisher et al. 2015). Taxonomic work is active in describing new species. Yet large uncertainties surround existing taxonomic delineations in many groups including corals, and species classifications evolve rapidly, particularly through the use of genomics, and many species names are expected to change over time (e.g., Benzoni et al. 2010; Huang et al. 2014a, b; Nakajima et al. 2017; Tea et al. 2022). Up-to-date taxonomic reference databases, such as TAXREF from the Inventaire National du Patrimoine Naturel (INPN, https://inpn.mnhn.fr, Gargominy et al. 2022) and the World Register of Marine Species (WoRMS, www.marinespecies.org) are essential for ensuring coherence in species designations. Current descriptions distinguish 1681 species of hard corals including 995 associated with coral reefs, 19,772 fish, 55,238 crustaceans, 50,877 mollusks, and 3760 hydrozoans (see Fig. 10.16a, b for all groups). Overall, species descriptions and therefore biodiversity estimates are more complete for large species in shallow habitats such as megafauna which are easier to observe and tend to decrease for smaller and more cryptic habitats and species, including sponges, although genetic meta-barcoding and bioacoustic approaches increasingly enable detection (Elise et al. 2019;

Nichols et al. 2022; Wolfe et al. 2023; Galand et al. 2023). Biogeographic studies on species distributions assess spatial variations in species diversity and the mechanisms behind speciation and extinctions (Cowman and Bellwood 2013; Clements et al. 2017; Tea et al. 2022; Cantalice et al. 2022). Regional comparisons identify a pronounced gradient in species diversity with the spatial extent of coral reef systems (Bellwood et al. 2005) as well as their geographic distance to the center of marine biodiversity situated in Southeast Asia (Hughes et al. 2002a; Dietzel et al. 2021; Lutzenkirchen et al. 2023) and to the equator (Jones et al. 2019), features that are reflected across French overseas (Figs. 10.17, 10.18 and 10.19). These patterns concord with our general understanding that the level of biodiversity of a system is a function of the extent and diversity of ecological niches available, which relates to spatial as well as temporal heterogeneity (e.g., increased seasonality at higher latitudes promoting species coexistence through competitive reversals; Logan 1984; Kayal and Adjeroud 2022), and the variety of organisms able to occupy these niches. Nevertheless, current estimates of species richness should be considered with caution for certain species groups, since estimation methods and sampling efforts may differ among regions and result in potential bias (e.g., differences in coral diversity estimates in Fig. 10.16c). For instance, both molecular and morphological approaches are used to assess species diversity, which often results in contrasting outcomes, and a recent extrapolation-based study accounting for sampling effort suggests that coral diversity may in fact be higher in the western Indian ocean than in the coral triangle (Kusumoto et al. 2020). Overall, how species richness and other biodiversity metrics vary with spatial scales or other units of sampling effort remains poorly understood (Nash et al. 2014; Chase et al. 2018; Donovan et al. 2023).

A large body of work exists on using the dynamics of key communities of ecological or social importance, such as corals and fish, to assess coral reef ecosystem health and associated management strategies (Lamy et al. 2016; Kayal et al. 2018; Adjeroud et al. 2018a; Vercelloni et al. 2019; Carturan et al. 2020; Graham et al. 2020). Some studies investigate more specifically the ecological functions associated with different communities, such as primary production, herbivory, nutrient transport and recycling, and habitat formation or alteration (Brandl et al. 2019a; Pimiento et al. 2020), and the ecological processes through which changes in one community spread to other ecosystem components (Leray et al. 2012; Kayal et al. 2012b; Condie et al. 2018; Dubois et al. 2019). Nevertheless, the complexity of biotic interactions, including predator-prey, competition versus mutualism, symbiosis versus parasitism, and how they are modulated by environmental conditions remains largely unexplored, particularly in biodiverse and ecologically oscillating ecosystems such as coral reefs (Connell 1978; Schmitt et al.

Fig. 10.15 Dispersal capabilities of various marine organisms with characterized propagule duration and dispersal range (not restricted to coral reef species, data from Shanks 2009). (a) Dispersal stage, dis-

tance, and duration (mean \pm range) for different taxonomic groups and (b) relationships between propagule dispersal and duration. Coral reef species are identified in bold

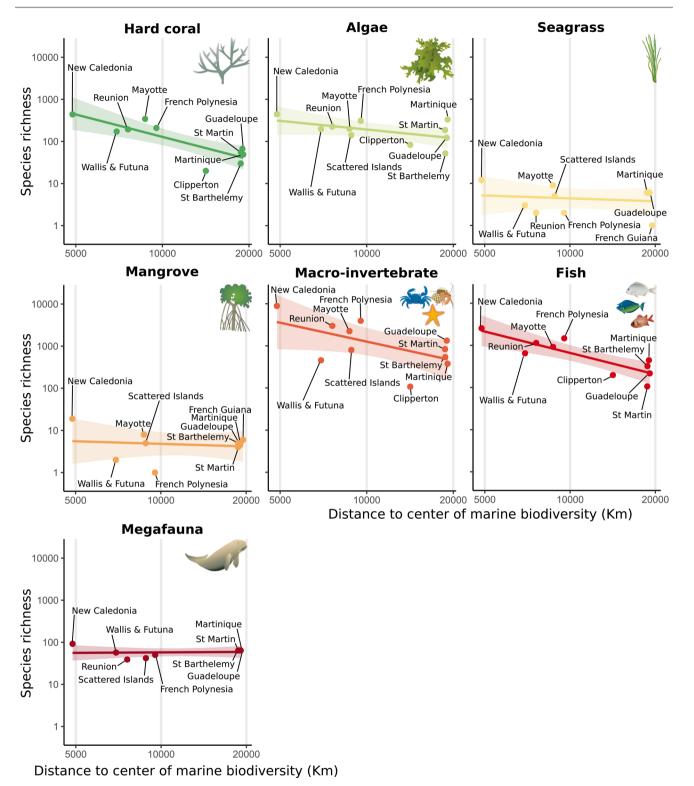

Fig. 10.16 Species diversity of major coral reef communities and associated lagoonal habitats. (a) Number of all named marine species (not restricted to coral reef-associated species) per taxonomic group (data from the World Register of Marine Species). (b) Estimated species richness

Fig. 10.17 Species diversity of major coral reef ecological communities as a function of ecosystem surface area (coral reef system surface area includes constructed hard-substrate reef and associated lagoonal habitats, c.f. Spalding et al. 2001)

Fig. 10.16 (continued) of coral reef-associated multicellular communities. (Adapted from Fisher et al. 2015). (c) Species richness for key coral reef communities in French overseas. For reef-building corals, estimates from different sources are provided. Data from Pichon and Bosserelle (pers. com.), Benzoni (2019) and IUCN comité français et al. (2020) result from a more in-depth analysis of sample specimens from the area. Megafauna comprises large marine species groups: sea turtles, dugongs, dolphins, whales, sharks and rays, and sea snakes

210 F. Pellerin et al.

Fig. 10.18 Species richness of major coral reef ecological communities as a function of distance to the center of marine biodiversity (reference point set as western Banda Sea, latitude -5.461885, longitude 122.936220)

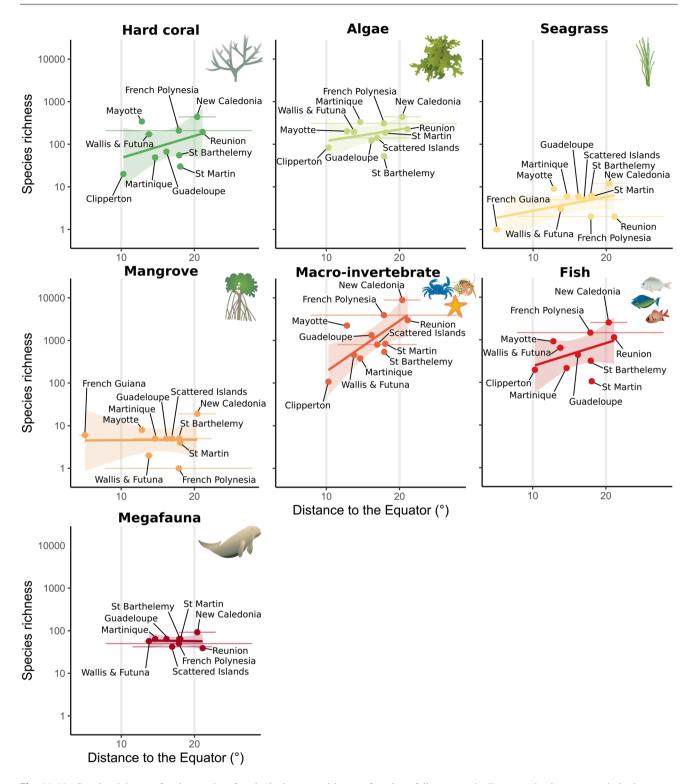
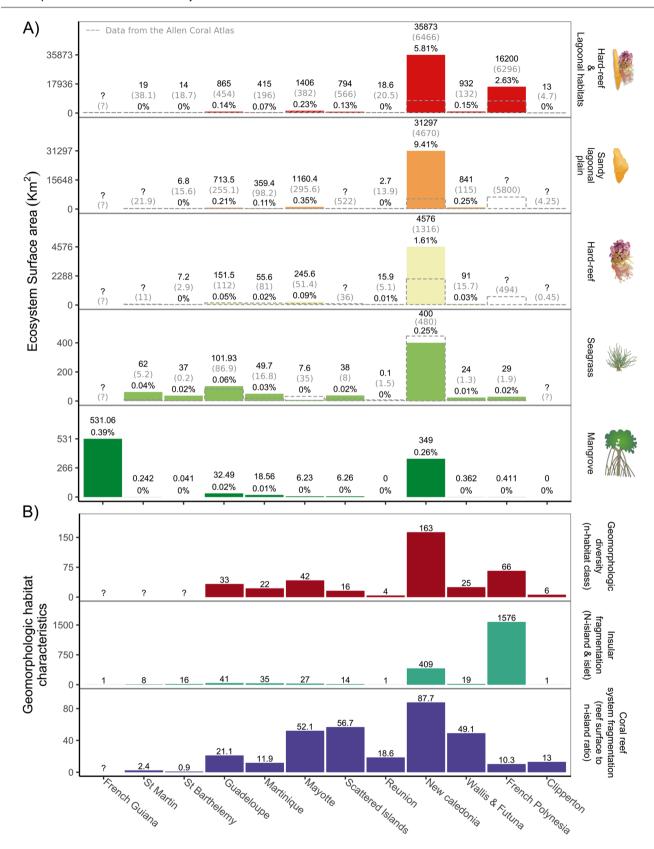


Fig. 10.19 Species richness of major coral reef ecological communities as a function of distance to the Equator (absolute average latitude ±range, in degree)


2009; Mills and Côté 2010; Kayal et al. 2011; McKeon and Moore 2014; Kayal et al. 2017a; Kayal and Adjeroud 2022). It is only recently that fine-scale ecosystem time-series data have enabled empirical investigations on major ecological processes driving ecosystem resilience (Mumby et al. 2007; Riegl et al. 2018; Cresswell et al. 2023). To strengthen coral reef conservation actions, more knowledge is needed on the ecological processes driving community dynamics, including on the less emblematic and cryptic communities such as microorganisms, algae, and sponges that are understudied (de Goeij et al. 2013; Brandl et al. 2019b; Cannon et al. 2023; Galand et al. 2023).

10.3.9 Ecosystems

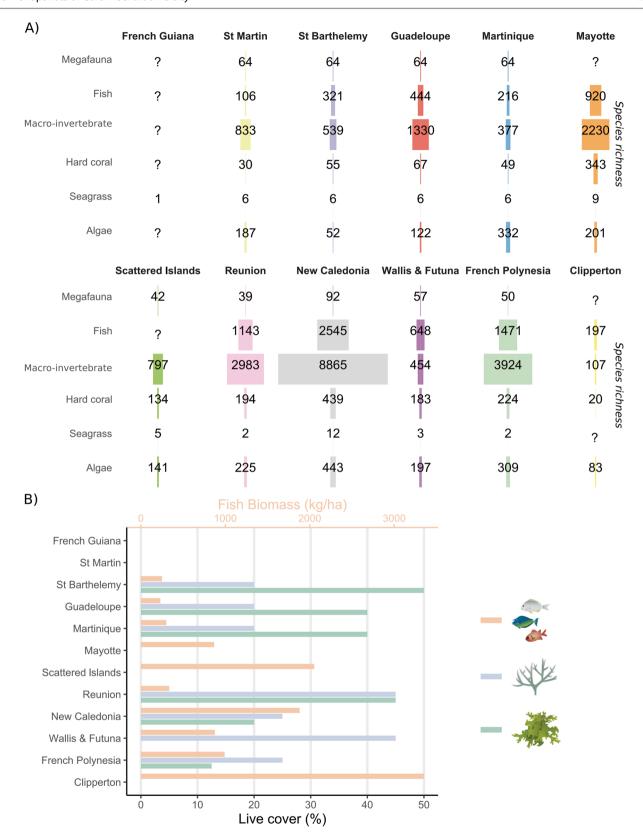
Coral reef ecosystems around the world differ in size, composition, health, and dynamics, resulting in a myriad of ecosystem states with unique ecological features. However, some key ecosystem characteristics enable differentiating coral reef systems into broad functional categories along ecological gradients. At a broad consideration, the size and degree of isolation have strong consequences on the structure and fate of coral reef ecosystems. On one side of the spectrum, large continuous systems in the southwestern Pacific, such as the Australian Great Barrier Reef with 348,700 km² of reef habitats and New Caledonia's reef system with 35,873 km² contrast with small and isolated systems on the other side of the spectrum, such as the atoll of Clipperton with its 13 km² of reefs located approximately 950 km from the closest coral reef system (Romero-Torres et al. 2018; Figs. 10.4 and 10.20). Within this spectrum, many systems of various sizes are found with differing degrees of geographic fragmentation and ecological isolation, sometimes due to the presence of natural barriers to dispersal (Raitsos et al. 2017; Hock et al. 2017; Romero-Torres et al. 2018). For example, the 19 km² of coral reefs surrounding the single island of Reunion in the Indian Ocean are situated roughly 200 km from the closest reef system of Mauritius and 700 km from Madagascar, whereas the 16,200 km² of reefs in French Polynesia are scattered among 5 archipelagoes, 118 islands, and atolls (1576 land units including islets, Fig. 10.20b) across 2,500,000 km² of ocean in the Central South Pacific. These broad geomorphological characteristics of reef systems are relatively well-known for shallow habitats in clear waters, thanks in big part to satellite imagery, but knowledge decreases rapidly with water depth and turbidity as evidenced by the Great Amazon Reef that was only recently discovered under the Amazonian river plume and extends ~1000 km, including into French Guiana's coastal waters (Moura et al. 2016; Francini-Filho et al. 2018). The size and degree of isolation of the reefs determine the level of chemical and biological connectivity between ecosystems

and therefore the productivity, regeneration capacity, and resilience of the diverse species populations they host (Edmunds et al. 2016; Gounand et al. 2018). In the face of disturbances, small and isolated coral reef systems are therefore generally more vulnerable to full-system collapse and exhibit limited recovery capacities, while for larger interconnected coral reef systems, disturbance impacts are often restricted to small portions, resulting in higher rates of demographic replenishment from adjacent unaffected populations (Wolff et al. 2016; Riegl et al. 2018; Vercelloni et al. 2019; Adjeroud et al. 2022). Larger reef systems also host higher proportions of biodiversity, thanks to a wider geographical expansion and the amount and diversity of ecological habitats and niches available (Eddy et al. 2021), as illustrated with New Caledonia's large ecosystem surface areas and associated biodiversity metrics (Fig. 10.17). Meta-ecosystem approaches characterizing chemical and demographic flow between ecosystems are still nascent, and their development should deepen our understanding of ecological drivers of ecosystem productivity and resilience (Gounand et al. 2018; Condie et al. 2021).

Ecosystem productivity and trophic organization are other key attributes characterizing different states in coral reef ecosystems. However, comprehensive ecosystem-level evaluations remain scarce, as most ecological investigations are conducted at the population or community scale, seldom integrating the various communities constituting coral reef ecosystems (Fig. 10.2; Rogers et al. 2015; Condie et al. 2018; Dubois et al. 2019). Nevertheless, simplified evaluations based on the representation of a limited number of ecological components or functions capture key species interactions such as habitat provision, predation, and competition, therefore characterizing major ecosystem dynamics (Kayal et al. 2012b; Mourier et al. 2016; Brandl et al. 2019a; Pimiento et al. 2020; Adam et al. 2021; Wolfe et al. 2023). Overall, the studies indicate that the magnitude of ecosystem biomass and its distribution among different ecological compartments vary in space and time as a function of the carrying capacity of the systems, the length and complexity of the food webs, the species richness of the different communities, and their dynamics in relation to the natural and human environments (Trebilco et al. 2013; Jacquet et al. 2020; Nagelkerken et al. 2020; Mehner et al. 2022). As such, healthy coral reef ecosystems situated in protected areas near the center of marine biodiversity tend to be characterized by more developed food webs and higher overall productivity, thanks to a more effective exploitation of ecological niches (McCook et al. 2010; Mellin et al. 2016; Morais et al. 2021; Heudier et al. 2023). In contrast, disturbed, degraded, and less diverse coral reefs tend to show shorter food webs and lower ecosystem productivity due to a limited exploitation of ecological niches, mortality events, and eventually the collapse of most vulnerable species populations (D'agata et al.

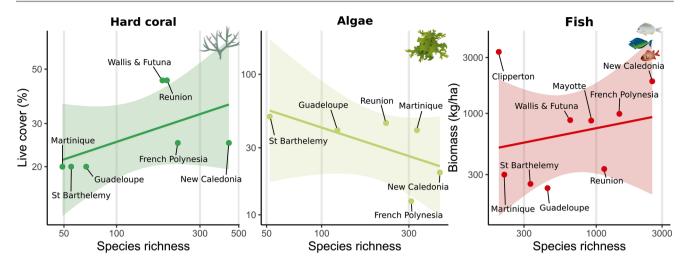
Fig. 10.20 Characteristics of coral reefs and associated ecosystems across French tropical overseas. Ecosystem surface areas and the percentage of the global values they represent are illustrated (data from and Spalding et al. 2001 IFRECOR 2021, as well as https://allencoralatlas.

org for comparison), along with the diversity in reef geomorphologic habitats (number of level 5 teledetection classification out of a total of 800 coral reef habitat geomorphologies found on Earth, data from Andréfouët et al. (2008) and system fragmentation indices


2016; Cinner et al. 2018; Darling et al. 2019; Duprey et al. 2020; Eddy et al. 2021; Zhang et al. 2023). Coral decline, nutrient discharge, and the collapse of herbivore populations have led to drastic ecosystem upheavals, including shifts in dominance from corals to algae in many places (McManus and Polsenberg 2004; Schmitt et al. 2019; Morais et al. 2020; Adam et al. 2021; Reverter et al. 2022). While the ecological mechanisms controlling ecosystem resistance and resilience to such abrupt transition are generally understood, ecosystem vulnerability to various forms of stressors acting in isolation or in concert remains largely to be quantified. The development of new methods for monitoring coral reef ecosystems such as bioacoustics (Elise et al. 2019; Dimoff et al. 2021), remote-sensing (Hedley et al. 2016), and eDNA (Alexander et al. 2020; West et al. 2020), boosted by machine learning algorithms (Burns et al. 2022; Ditria et al. 2022), can help accelerate data acquisitions and processing, including in cryptic and mesophotic coral reef habitats for which relatively little is known (Brandl et al. 2019b; Pérez-Rosales et al. 2022; Wolfe et al. 2023).

Among the major ecological compartments of coral reef ecosystems, species diversity generally culminates in invertebrates, followed by fishes, corals, and algae, although the relative contributions of the different communities to species diversity vary among regions (Figs. 10.16 and 10.21a). While differences in data availability among regions blurs to some degree the level of certainty on these patterns, furthering these trans-community evaluations will bring heightened understanding of the magnitude and organization of ecosystem biodiversity among regions and taxonomic groups. Inter-regional comparisons indicate a marked contrast in coral reef ecological states between oceanic basins, with corals prevailing as primary constituents of reef habitats in the Pacific Ocean and macroalgae dominating the substrate on Caribbean reefs, with an intermediate state observed in the Indian Ocean (Fig. 10.21b; Reverter et al. 2022). These regional differences in dominance between corals and macroalgae concord with global gradients in coral species diversity and robustness of herbivory, which culminate in the Pacific Ocean and are weakest in the Caribbean (Hughes et al. 2002b; Bellwood et al. 2005; Sigueira et al. 2019; Cramer et al. 2021). Similarly, the abundance of various species groups changes with the latitudinal gradient, including sponges which are more prevalent near the equator and softcorals at higher latitudes (Reverter et al. 2022). A positive relationship is observed between community diversity and biomass across regions for corals and fish, but not for algae in which the species diversity to biomass relationship is negative (Fig. 10.22). These patterns concord with our general understanding that species diversity supports higher ecological productivity, particularly at higher trophic levels, in structurally complex ecosystems dominated by corals, and declines when reefs are dominated by algae (Mumby and

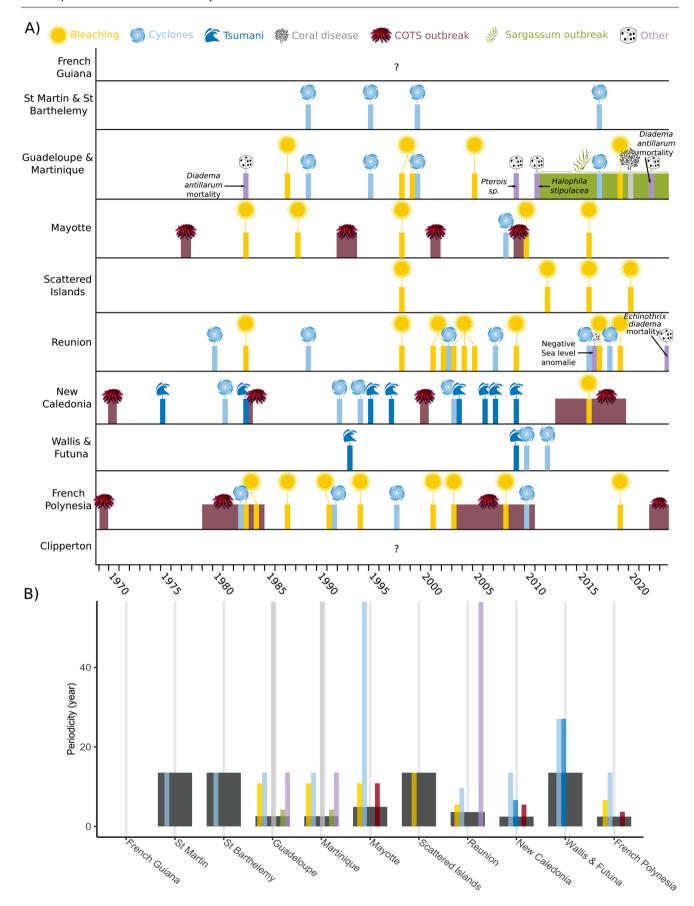
Steneck 2008; Graham and Nash 2013; Nash et al. 2014; Rogers et al. 2015; Clements et al. 2017). They indicate biomass maxima in coral and fish communities are achieved by species additions and therefore a diversified occupation of ecological niches, whereas high algal productivity tends to be driven by few proliferating species. These communitylevel differences have cascading effects that spread to other ecosystem compartments through species ecological functions and trophic and other forms of biotic interactions. Diversified coral communities contribute structural habitats for a myriad of organisms, including for species necessitating relatively large and long-lasting structures, therefore amplifying biodiversity and trophic food chains beyond the capacity of algal structures (Richardson et al. 2017a; Urbina-Barreto et al. 2021). This topic necessitates deeper investigation to comprehend the links between biodiversity, ecological productivity, habitat, and spatial scale, and the consequences of the ongoing changes of coral reef ecosystems.


A synthesis of the major environmental disturbances impacting coral reefs across French tropical overseas over the last decades indicates coral reef systems differ in their exposure and vulnerability to different types of disturbance (Fig. 10.23). While some disturbances, such as cyclones and increasingly coral bleaching events, occur globally in the tropics (Hughes et al. 2018; Puotinen et al. 2020), others are restricted to specific regions. This is the case with major diseases causing coral and sea-urchin Diadema antillarum die-offs, outbreaks of the holopelagic macroalgae Sargassum fluitans and S. natans, and rapid population expansions of invasive seagrass Halophila stipulacea and lionfish Pterois spp. in the Caribbean Sea (Côté and Smith 2018; Winters et al. 2020; Marsh et al. 2021; Hewson et al. 2023). Similarly, outbreaks of the coral predator crown-ofthorns starfish Acanthaster spp. are restricted to the Indo-Pacific, whereas tsunami impacts to coral reefs are mostly reported in the southwest Pacific (Løvholt et al. 2012; Pratchett et al. 2014). These large-scale spatial patterns emerging from inter-regional comparisons are also modulated by smaller, intra-system differences, particularly in broad and fragmented coral reef systems such as French Polynesia, New Caledonia, Scattered Islands, and Great Barrier Reef where disturbance impacts are spatially contained (Kayal et al. 2012b; Wolff et al. 2016; Adjeroud et al. 2018a; Mellin et al. 2019; Vercelloni et al. 2019; Pérez-Rosales et al. 2021a).

Despite significant differences in the level of knowledge available on environmental disturbances among regions, it appears that some coral reef systems like the ones in French Polynesia, New Caledonia, and the Caribbean islands are situated in areas prone to high frequency of disturbance, while others in Wallis and Futuna and Scattered Islands (though Tromelin is in a cyclone route) seem to lie in relatively stable environmental sanctuaries that suffer fewer

Fig. 10.21 Coral reef ecosystem diversity and productivity across French tropical overseas. Species richness of key ecological communities constituting the coral reef trophic pyramid (**a**, see Fig. 10.16 for

data sources) and percent cover of corals and algae and fish biomass (b, data from McClanahan et al. 2019, 2021; Souter et al. 2021)


Fig. 10.22 Relationships between species diversity (richness) and biomass (reflected by percent cover in sessile communities) in corals, algae, and fish. Percent cover and biomass data from McClanahan et al.

(2019, 2021) and Souter et al. (2021); see Fig. 10.16 for species richness data sources

disturbance events (Fig. 10.23b; Løvholt et al. 2012; Puotinen et al. 2020; Kuempel et al. 2022). While coral reefs have long evolved with environmental disturbances whose nonequilibrium effects on ecosystems are seen as a major source of their exceptional biodiversity (Connell 1978; Quattrini et al. 2020), the consequences of recent changes in disturbance types and regimes for coral reef resilience and functionality remain insufficiently understood to support adequate management, especially in regions of high exposure and vulnerability Adjeroud et al. 2018a; Vercelloni et al. 2019; Leinbach et al. 2021; Pérez-Rosales et al. 2021a; Carlot et al. 2023; Zhang et al. 2023). Eutrophication and fishing are suspected to generate a higher occurrence and intensity of Acanthaster outbreaks and associated mass coral mortality, whereas the frequency and magnitude of temperature anomaly-induced coral bleaching events and cyclonic storms have risen with ongoing climate changes (Sweatman 2008; McCook et al. 2010; Mellin et al. 2016; Vanhatalo et al. 2017; Puotinen et al. 2020; Cresswell et al. 2023). Time-series analyses of coral cover indicate Acanthaster outbreaks have resulted in strongest impacts on reefs through mass coral mortality and cascading effects on various reef communities, followed by cyclones and then coral bleaching events, although coral mortality associated with regional and global bleaching is becoming more prominent (Osborne et al. 2011; De'Ath et al. 2012; Kayal et al. 2012b; Adjeroud et al. 2018a; Vercelloni et al. 2019; Pérez-Rosales et al. 2021a; Gilmour et al. 2022). Coral bleaching events have become a common part of coral reef dynamics in most tropical regions, with variable inter-annual occurrences depending on climatic oscillations (El Niño Southern Oscillation, North Atlantic Oscillation) and the ecological state (abundance, composition) of coral communities (Sully et al. 2019).

Higher sea water temperatures have also been related to increases in coral disease (Burke et al. 2023). The National Oceanic and Atmospheric Administration (NOAA)'s (https://coralreefwatch.noaa.gov) tool has been a major information source for marine heatwave and coral bleaching alerts and forecasts (and https://www.nhc.noaa.gov for tropical cyclones), although its continued availability is uncertain due to current government instability and public service meltdown in the USA.

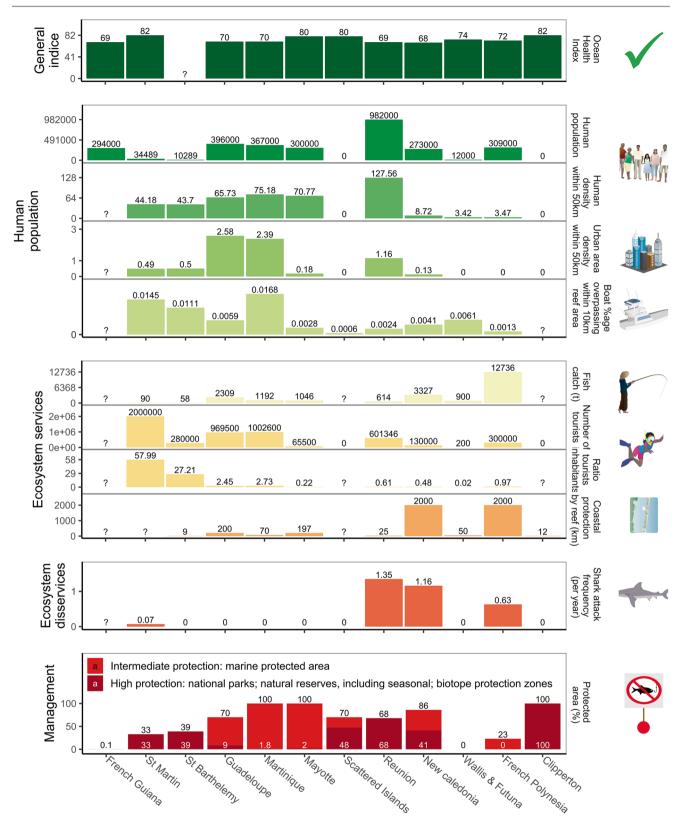
Over recent decades, much research attention has been dedicated to elucidating the mystery behind Acanthaster outbreaks, whose drivers have remained elusive (Pratchett et al. 2014, 2017), although pieces of knowledge add up with new studies performed during each new outbreak cycle. Accumulated evidence points toward the role of nutrient limitations on larval stages (Fabricius et al. 2010; Wooldridge and Brodie 2015), predatory control particularly on juveniles (Sweatman 2008; Cowan et al. 2017; Westcott et al. 2020), and, more recently, the capacity of the juvenile seastars to remain in a latent (ecologically "dormant") herbivorous stage where cryptic populations hidden in dead-coral rubble can build up over years before shifting to corallivory and full-grown mature adults once live coral is abundant (Deaker et al. 2020; Wilmes et al. 2020; Deaker and Byrne 2022). Recurrent observations of outbreak episodes have enabled identification of initiation sites and propagation patterns of outbreaks in several regions, along with a good knowledge of their impacts to coral communities, repeatedly observed patterns that therefore appear predictable (Kayal et al. 2012b; Adjeroud et al. 2018b; Babcock et al. 2020; Wilmes et al. 2020; Condie et al. 2021). Among French tropical overseas, Acanthaster outbreaks are recorded in French Polynesia, New Caledonia, and Mayotte with a periodicity of

Fig. 10.23 Major environmental disturbances to coral reefs recorded in French tropical overseas over years (a) and mean periodicity of the events (b). In b, occurrence periodicities are shown per disturbance type (color bars) and considering all types of disturbances (black bars)

~15 years (Fig. 10.23), which is consistent with the frequency of outbreaks reported in other regions such as Australia's Great Barrier Reef (Kayal et al. 2012b; Pratchett et al. 2017; Adjeroud et al. 2018a; Babcock et al. 2020; Richards et al. 2021). Occurrences of the outbreaks seem correlated with ocean productivity in relation to regional weather oscillations influencing patterns of temperature, rainfall, and wind (Fabricius et al. 2010; Houk and Raubani 2010; Wooldridge and Brodie 2015; Matthews et al. 2020), with hitherto no direct evidence of recent increases in frequencies or intensities of the outbreaks. Yet, comparative coral reef health assessments highlight the importance of preserving ecosystem integrity for higher chances of resilience in the face of Acanthaster outbreaks (Sweatman 2008; McCook et al. 2010; Mellin et al. 2016; Westcott et al. 2020; Kroon et al. 2021). Recently, much effort has been dedicated to identifying reef predators able to keep Acanthaster populations in check as a natural solution to outbreaks (Cowan et al. 2017; Desbiens et al. 2023; Kayal and Lenihan 2025). Within-system studies indicate the seastar outbreaks are restricted to reefs subject to coastal influence and propagate from distinct initiation sites that are exposed to high nutrient discharge, including mid-shelf reefs near the towns of Cairns in Australia's Great Barrier Reef and Noumea in New Caledonia and the north shore of the island of Moorea in French Polynesia (Fabricius et al. 2010; Kayal et al. 2012b; Wooldridge and Brodie 2015; Adjeroud et al. 2018b; Adam et al. 2021). As a new cycle of Acanthaster outbreaks spreads in the Pacific, interregional connectivity between Acanthaster populations among adjacent systems and the degree of synchronicity of outbreaks in response to regional weather patterns remain to be explored. Among major environmental disturbances impacting coral reefs, Acanthaster outbreaks are the easiest to try to mitigate, and control programs are performed in various regions (Condie et al. 2021; Castro-Sanguino et al. 2023). Yet, culling of the seastar populations is costly, has shown relatively limited efficiency over large spatial scales, and addresses a symptom rather than the root causes of the outbreaks. Nevertheless, despite its notorious reputation as a harmful species, a pest (Pratchett et al. 2014; Kayal et al. 2017b), Acanthaster is also recognized for its role as a keystone predator benefiting biodiversity by feeding preferentially upon competitive acroporids (particularly genera Acropora and Montipora) that otherwise have the capacity to outcompete other corals (Kayal et al. 2011; Darling et al. 2012; Pratchett et al. 2017; Kayal and Adjeroud 2022). The degree to which Acanthaster outbreaks are triggered by large abundance of their preferred prey species remains to be investigated, though long-term observations in Moorea, French Polynesia, indicate swarms of seastars emerge when competition for space among corals is particularly prevalent (Fig. 10.24).

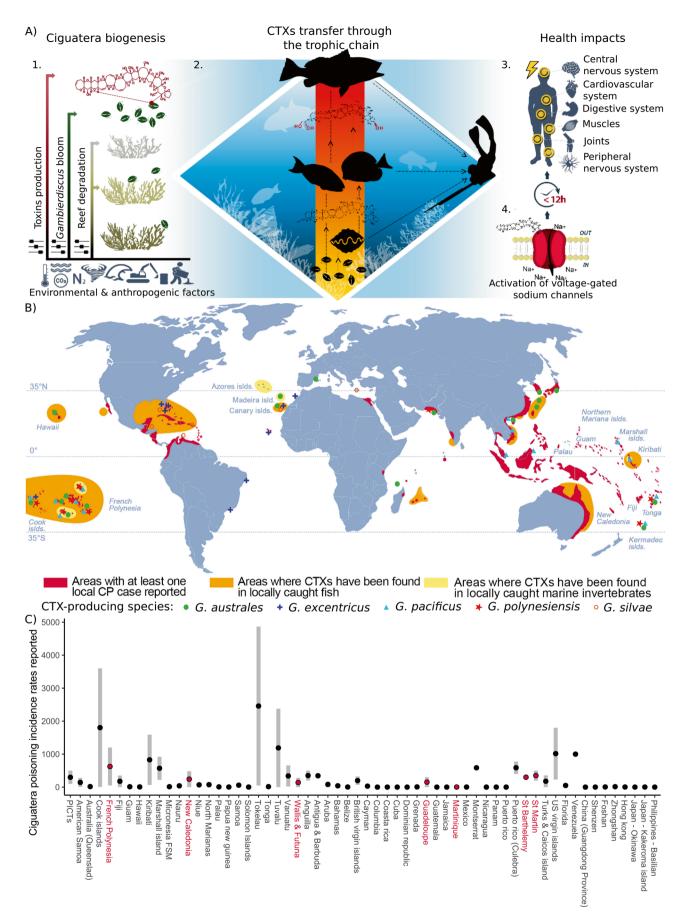
10.3.10 Socio-ecosystems

Coral reef socio-ecosystems around the world come in a variety of forms, combining differing levels of natural ecosystem and human society features (Figs. 10.20, 10.21, 10.22, 10.23 and 10.25). The prevalence and impacts of human populations, as well as their ties to ecosystems for coastal protection, food, and economic resources, are key to ecosystem health and the resulting level of sustainability and benefits to nature and society (McCook et al. 2010; Cinner et al. 2018; Comte and Pendleton 2018; Williams et al. 2019; Darling et al. 2019; Castro-Cadenas et al. 2022). Small natural systems supporting large human populations tend to suffer from stronger impacts from coastal development, overexploitation, and pollution, resulting in reduced ecosystem health, management deficiencies, and limited socio-ecosystem resilience (Duprey et al. 2020; Boyce et al. 2020; Ouédraogo et al. 2021; Andrello et al. 2022; Ouédraogo et al. 2023). This begs the long-standing question of the carrying capacity of natural systems, not only in terms of the size of the human population they can support but most importantly the overall level of stress they can sustain without declining. Other socio-ecosystem aspects, including the ecological and geomorphological contexts as well as the economic and cultural ties to the reef, further contribute to the vulnerabilities of the systems (Mumby et al. 2007; Anthony et al. 2015; Sigueira et al. 2019; Cramer et al. 2021). When management strategies fail to preserve coral reef ecosystem health, declines in biodiversity, biological productivity, and ecological functionality reduce the level of ecosystem services provided to society, often with a rise of negative interactions and ecosystem disservices (Speers et al. 2016; Woodhead et al. 2019; Carlot et al. 2023). Harmful algal blooms such as outbreaks of benthic ciguatoxin-producing dinoflagellates occur more frequently in degraded environments where dead coral skeletons and macroalgae surfaces provide substrate for the microorganism, with strong societal consequences for human health and economy (Fig. 10.26; Alves de Souza et al. 2022). Described for centuries in French tropical overseas, ciguatera poisonings are on the rise under the possible influence of global changes (marine heat waves, ocean acidification, etc.), and the distribution range of ciguatoxin-producing species and their accumulation in trophic food webs is expanding to subtropical/temperate regions, though the statistics of human poisonings remains highly underestimated as most cases go undocumented (Fig. 10.27; Rongo et al. 2009; Chinain et al. 2021). The CiguaWatch Initiative, led by French Polynesia,

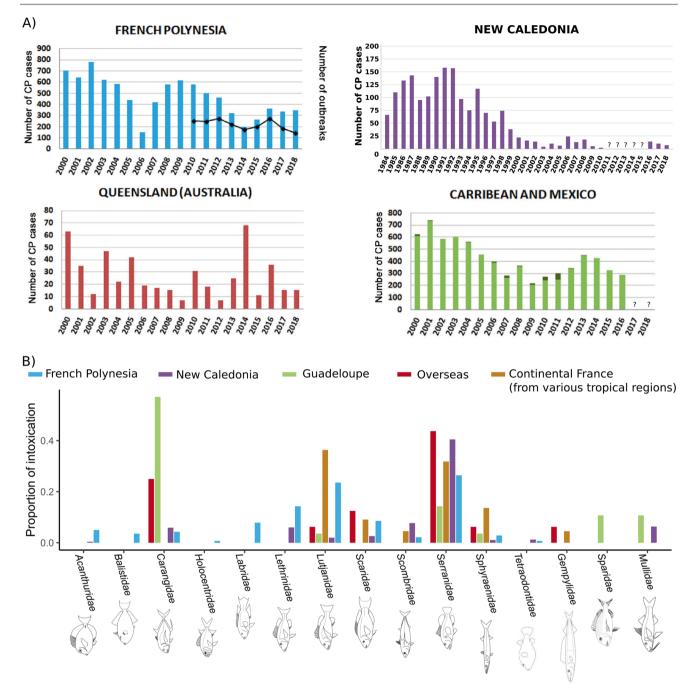

Fig. 10.24 Photographs illustrating the co-occurrence of outbreaks of the coral predatory seastar crown-of-thorns starfish (*Acanthaster*) with periods of high abundance of their favorite prey, the acroporid corals (particularly genera *Acropora* and *Montipora*). Photographs were taken in the lagoon of Moorea, French Polynesia, at the onsets of two distinct episodes of *Acanthaster* outbreaks occurring ~15 years apart and causing widespread coral mortality (Fig. 10.23). The pictures show the capacity of encrusting *Montipora* to overgrow other corals, particularly

massive *Porites* which is foundational to forming large habitat structures in the lagoon. Because *Acanthaster* preferentially preys upon acroporids, their episodic outbreaks prevent *Montipora* to fully outcompete *Porites*, promoting species coexistence. Bottom-right picture shows *Acropora* and *Montipora* colonies (underscored names) bearing white feeding scars characteristic of recent predation by the seastar. See text for references on the topic

provides a regional platform for training and data sharing on Ciguatera poisoning surveillance in the South Pacific (https://ciguawatch.ilm.pf). Ongoing research particularly seeks a better understanding of ciguatera-related algal bloom ecology for anticipating and monitoring outbreaks, evaluating their consequences on societies, and improving


ciguatoxin detection tests, patient diagnostic tools, and medical care (Rongo et al. 2009; Chinain et al. 2020; Chinain et al. 2021). Other examples of negative feedback from system alterations include recent concerns about increasing outbreaks of the coral predatory seastar *Acanthaster* throughout the Indo-Pacific and *Sargassum*

220 F. Pellerin et al.


Fig. 10.25 Differences in coral reef socio-ecosystems among French tropical overseas. The Ocean health index summarizes ecosystem state and resilience on a scale of 0–100 (Halpern et al. 2012). Shark attack

frequency was calculated over the 1980–2023 period. (Data from https://oceanhealthindex.org, https://recifs.epfl.ch, https://www.iedom.fr, https://public.opendatasoft.com and IFRECOR (2021))

Fig. 10.26 Ciguatera poisoning biogenesis and transmission (**a**, adapted from Chinain et al. 2023), distribution of ciguatoxin (CTX) producing species (*Gambierdiscus* spp.) Ciguatera poisoning prevalence areas (**b**, adapted from Chinain et al. 2021), and Ciguatera poison-

ing (CP) incidence rates among regions (c, data adapted from Chinain et al. 2021 and references therein). PICTs for Pacific Island Countries and Territories

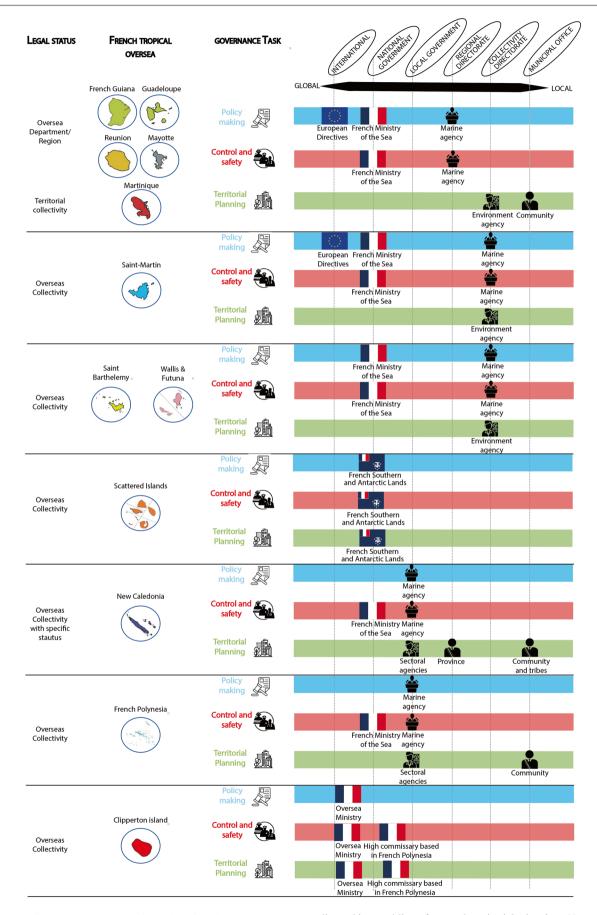
Fig. 10.27 Documented number of human ciguatera poisoning (CP) cases through time per region (a, adapted from DASS 2018; Chinain et al. 2021) and vectors implicated in both autochthonous and imported

poisonings (b, data from Boucaud-Maitre et al. 2017; DASS 2018; Gatti and Chinain 2023)

strandings in the Caribbean (Fig. 10.23; Pratchett et al. 2014; Matthews et al. 2020; Marsh et al. 2021) and critical shark attacks on humans in Australia, Reunion, and New Caledonia (Fig. 10.25; Taglioni et al. 2019; Maillaud et al. 2022; Riley et al. 2022), although there is still limited understanding of underlying drivers. In the face of uncertainties and lack of incentives to address root causes, *Sargassum* removals and culling of *Acanthaster* and shark

populations are common practice in different coral reef socio-ecosystems, practices that are often hotly debated (Papastamatiou et al. 2006; Vanhatalo et al. 2017; Pratchett and Cumming 2019; Babcock et al. 2020; Condie et al. 2021; Gray et al. 2021; Maillaud et al. 2022; Borsa et al. 2023). Fortunately, positive examples of human-wildlife interactions with potentially deadly animals also exist, although the mechanisms determining sustainability and

their thresholds remain in big part to be understood (Udyawer et al. 2021).


Coral reef biodiversity and associated ecosystem productivity and services have long supported the development of human societies in the tropics. Yet in various places, rapid and ecologically unsustainable growth has caused coastal alterations that are beyond the tolerance capacity of ecosystems, threatening the sustainability of the coral reef socioecosystems (Woodhead et al. 2019; IPBES 2019; Duprey et al. 2020). Achieving sustainable coral reef socio-ecosystem development is however not easy, as local human activities often impact marine ecosystems over large spatial scales and are increasingly combined with global environmental changes (Donovan et al. 2023), as many human concentrations have already caused significant and long-lasting damage to their surrounding ecosystems and as many societies still prioritize unsustainable development paths (Brodie and Waterhouse 2012; Cinner et al. 2018; Daskin and Pringle 2018; Kayal et al. 2019; Darling et al. 2019; OECD 2020; Cramer et al. 2021; Ouédraogo et al. 2021; Ouédraogo et al. 2023; Calvin et al. 2023). The most extreme disturbances in French tropical overseas took form as nuclear testing in 1966-1996 on the islands of Mururoa and Fangataufa in French Polynesia, of which 41 were conducted above ground and 140 in volcanic rock under the coral reef (Philippe et al. 2022), and broad use of the highly toxic and long-lasting organochlorine pesticide chlordecone in Guadeloupe and Martinique in 1973–1993 (Multigner et al. 2016), with, apart from cancers in local human populations, largely unknown consequences on the coral reef socio-ecosystems and life more broadly.

Among the >500 million people living in tropical coastal areas protected from erosion and storm waves by coral reefs, ~100 million live below 10 m elevation within 10 km of a coral reef (Ferrario et al. 2014; Beck et al. 2018; Carlot et al. 2023). Among these, ~three million people live in French tropical overseas, mostly in Reunion, Martinique, and Guadeloupe where coastal urbanization and human density are the highest, followed by French Polynesia, Mayotte, New Caledonia, and French Guiana, although the latest is largely dominated by mangroves (Figs. 10.20 and 10.25). Coastal protection by coral reefs is particularly prominent in New Caledonia due to the high exposure to tsunamis, particularly on the eastern coasts, as well as in French Polynesia where relatively young barrier reefs protect the small Central Pacific island community from storm waves (Sahal et al. 2011; Løvholt et al. 2012; Burke and Spalding 2022). Fishing rates are the highest in French Polynesia where seafood constitutes a highest portion of the diet and fish exportation a significant part of the economy (Morin et al. 2016; FAO 2022), whereas tourism is particularly developed in the Caribbean, followed by Reunion and French Polynesia. The degree of reliance of tropical coastal societies on coral reefs

varies from one system to another, though decline in coral reef health has strong consequences for exposure to flooding, food security, and economic opportunities (Pendleton 2010; Comte and Pendleton 2018; Alves de Souza et al. 2022; Carlot et al. 2023).

Coral reef socio-ecosystem vulnerability depends in big part on the ability of societies to durably manage ecosystems by preventing degradation and overexploitation through implementation of effective environmental regulations, exploitation quotas, and protected areas (McCook et al. 2010; Anthony et al. 2015; Rogers et al. 2015; D'agata et al. 2016). Overall, there are four major management strategies that target social and ecological vulnerabilities: environmental mitigation, ecosystem protection, restoration, and adaptation, though trade-offs and synergies between the different strategies and prerequisite conditions for success are largely unevaluated (Comte and Pendleton 2018; Thiault et al. 2020a). Comparisons across socio-ecosystems indicate that key characteristics of success include strong regulation enforcement and community engagement in management strategies (Cabral et al. 2018; Thiault et al. 2020a; Thiault et al. 2020b; Maxwell et al. 2020). Coral reef management across French overseas currently includes different levels of regulatory-designated marine protected areas, varying from 0% of ecosystem surface area in Wallis and Futuna to 100% in Clipperton (Fig. 10.25), though this does not account for other forms of locally recognized management. Limitations to design, implement, and enforce sustainable environmental management are often economic in nature, related to the level of inequality, dependency on natural resources and global market, and capacity of protection from local and international poaching (McCook et al. 2010; Cabral et al. 2018; Januchowski-Hartley et al. 2020; Thiault et al. 2020b; Maxwell et al. 2020; FAO 2022). The governance of socioecosystems and how different societal actors take part in management decisions are also important factors in socioecosystem trajectories (Morrison et al. 2020; Thiault et al. 2020a).

Coral reef socio-ecosystems exhibit a multitude of governance systems, as observed in French tropical overseas characterized by different degrees of decision-making centralization and a hierarchy of bodies performing policymaking, public safety, and territorial planning roles with different jurisdictions (Fig. 10.28). Given increasing environmental changes, and that many coral reefs may already be approaching their maximum tolerance limits, governance systems face the challenge of adapting rapidly while engaging a variety of societal actors at different scales (Donovan et al. 2023). Success in achieving healthy and resilient coral reef systems may depend on the capacity of socio-ecosystems to anticipate and adapt to future challenges (Rogers et al. 2015). Socio-ecosystemic diversity is a key attribute of French tropical overseas that are characterized by

Fig. 10.28 Governance systems of coral reef socio-ecosystems in French tropical overseas. Diagrams represent the hierarchy and jurisdictions of different governing bodies in relation to the three tasks of

224

policymaking, public safety, and territorial planning. Note that the uninhabited atoll of Clipperton is governed by France through a delegation based in French Polynesia

contrasting human histories, social and political organizations, and cultural and economic ties to natural resources. Societal challenges in these dispersed insular systems include finding a balance between local and national identities in a postcolonial era where the search for democracy, local governance, and social development is reliant on ecosystem preservation for coastal protection, food security, and economic development but challenged by pressures for overexploitation from the globalized market, a context increasingly exacerbated by environmental degradation and coral reef decline.

10.3.11 Biogeoclimatic Systems

Coral reefs interact with the Earth's geologic and climatic environments through multiple ocean-land-atmosphere interchanges whose prevalence varies with the size and characteristics of the systems (Fig. 10.29). By acreting carbonated reefs along the coasts, corals sequestrate oceanic carbon, modify ocean alkalinity, and produce shallow water substrate at slow yet potentially large scales (Smith 1978; Spalding et al. 2001; Jones et al. 2015; Carlot et al. 2021). The reefs reduce wave energy protecting coastlines from erosion and submersion and produce large amounts of carbonated sand that accumulates to create new habitats for many marine and terrestrial species, therefore amplifying biodiversity and associated benefits (Figs. 10.20 and 10.29c). Indeed, coral reef accretion and erosion generate conditions favorable to the establishment of diverse biological communities including seagrass and algae beds, mangroves, and the vegetation covering lagoonal islets, all of which contribute additional sets of ecological functions and ecosystem services such as habitat creation, carbon sequestration, and attenuation of wave and wind energy (Moberg and Folke 1999; McIvor et al. 2012; Guannel et al. 2016; Andréfouet et al. 2021; Carlot et al. 2023; Heudier et al. 2023). Among French tropical overseas, the contribution of coral reef accretion to the coastal systems' emerged land and lagoonal systems is most prominent in Scatter Islands, Clipperton, French Polynesia, Wallis and Futuna, Mayotte, Guadeloupe, and New Caledonia (Fig. 10.29c).

Coral reefs also interact with the local climate. By producing large stretches of white sand beaches and clear and shallow underwater habitats, coral reefs modify the local albedo, or how much solar radiation is sent back to the atmosphere, with a direct impact on surface temperature (Hays et al. 2001; McGowan et al. 2019). Coral reefs and associated ecosystems may influence local atmospheric conditions through heat and moisture exchanges and affect local meteorology such as cloud cover and rainfall (McGowan et al. 2022). Coral reefs are a source of dimethyl sulfide, an important aerosol involved in cloud formation, though its contribu-

tion to the local and regional aerosol burdens might be low compared to human sources (Yuan et al. 2022; Fiddes et al. 2022). Human societies living off the reef also contribute to local changes in albedo and wind through deforestation, urbanization, and various heat sources (Jin et al. 2019; Ouyang et al. 2022). The relative importance of coral reefs to the local climate might therefore vary from one system to another, depending on local characteristics of land-to-reef ratio, climatic environment, and human emissions of heat, gas, and particles. This includes direct emissions of heat for energy production and use in diverse sectors such as transport and industries, changes in albedo through land-use change including deforestation and urbanization, and emissions of greenhouse gas such as CO₂ and methane, and aerosols (Yuan et al. 2022). This diversity of coral reef biogeoclimatic systems is well illustrated across French tropical overseas (Fig. 10.29), providing a rich study system to investigate how coral reef systems interact with local and regional climate nowadays and into the future. This research avenue may help deepen understanding of mechanisms determining coral reef vulnerability to climate change, identification of potential adaptation and mitigation solutions, and predictions of thermal stress induced coral bleaching under future climatic conditions.

In the objective of socio-environmental sustainability, decarbonation of island emissions remains a real challenge, as many tropical overseas rely heavily on importations for food, material, energy, and economic activities (e.g., tourism), all of which come at a high cost in terms of carbon emissions (Kuo and Chen 2009). Among French tropical overseas, New Caledonia, whose economy is based on the mining industry, has the highest energy consumption and carbon emissions (Fig. 10.29a), with >75% of energy consumption associated with mineral extraction, purification, and export, mostly of nickel and cobalt (Losfeld et al. 2015). It is also the most distant tropical overseas from metropolitan France (Fig. 10.4), amplifying import-export-associated emissions. Despite ample access to solar, aeolian, and hydraulic energy, New Caledonia has a low proportion of renewable energy, though transition to green energy is a local priority and more supporting infrastructure has started to emerge around the archipelago over the recent years. In descending order of emissions, Reunion, Guadeloupe, Martinique, French Polynesia, and Guiana follow human population abundances (Fig. 10.30). Per capita emissions are lowest in Mayotte, which recently transitioned into a French overseas department and exhibits relatively low rates of urbanization (Figs. 10.25 and 10.28; Ninon 2007), and highest in New Caledonia with its mining industry, the two places standing out from the CO₂ emission to human population relationship (Fig. 10.30). Guadeloupe, Reunion, and Martinique are leading the transition to sustainable energy (Fig. 10.29a), with rapid changes over recent years. While

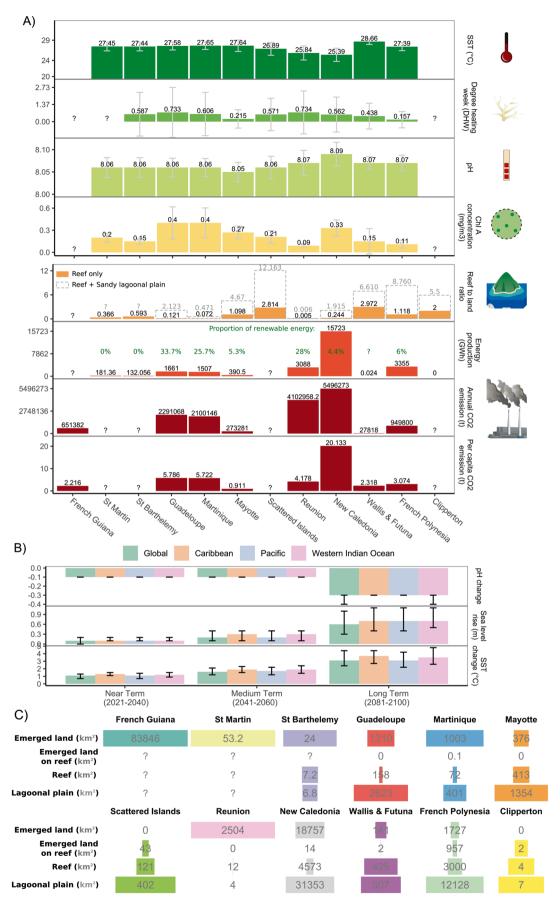


Fig. 10.29 Variability in coral reef biogeoclimatic features among French tropical overseas. (a) current characteristics (2021 data from Recif.epfl.ch, Andrefouet et al. 2008, www.worldometers.info, https://www.iedom.fr). (b) Predicted changes according to IPCC following the

SSP5–8.5 (business-as-usual) scenario (data from https://interactive-atlas.ipcc.ch). (c) Surface areas of reef, lagoonal plain, and emerged land per region. (Data from Andréfouët et al. 2008)

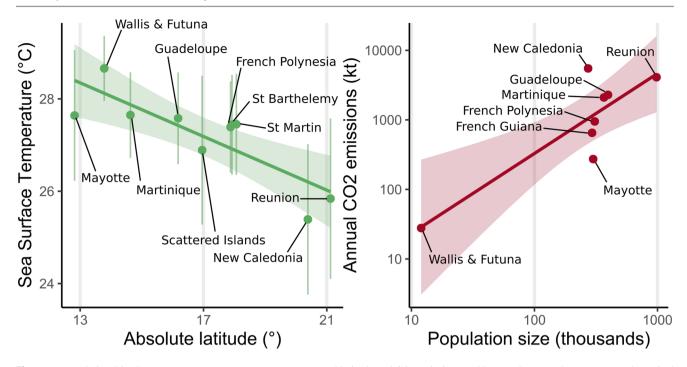
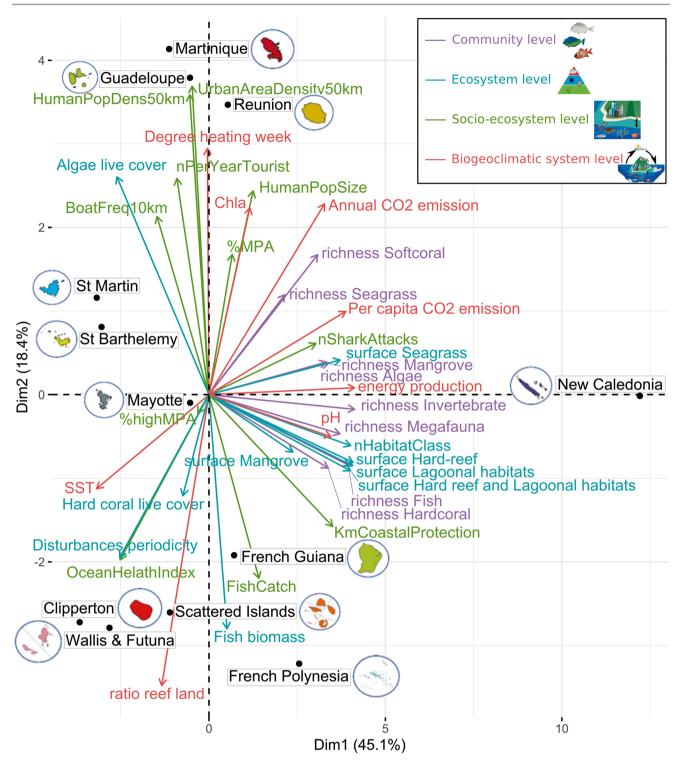


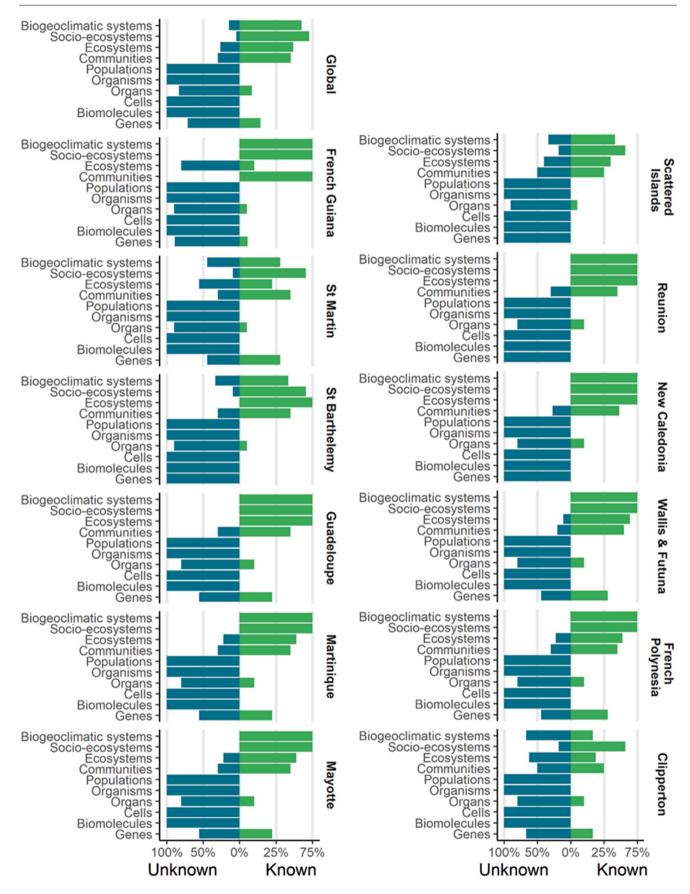
Fig. 10.30 Relationships between sea temperature (mean ± range) and latitude and CO₂ emissions and human demography across French tropical overseas

coral reef systems around the globe are exposed to different temperature regimes in relation to their latitudinal distributions (Fig. 10.30), the Intergovernmental Panel on Climate Change (IPCC) projections predict higher temperatures, sealevel rise, and lower pH, with a higher exposure for Caribbean reefs (Fig. 10.29b) that adds to their already higher vulnerability to coral decline and ecological shifts (Figs. 10.21b and 10.23; Hoegh-Guldberg et al. 2017; Kuempel et al. 2022). In the current battle for ecological and climate sustainability, tropical islands are key protagonists as both major contributors and victims of environmental decline and have a decisive role to play (Hernández-Delgado 2015).

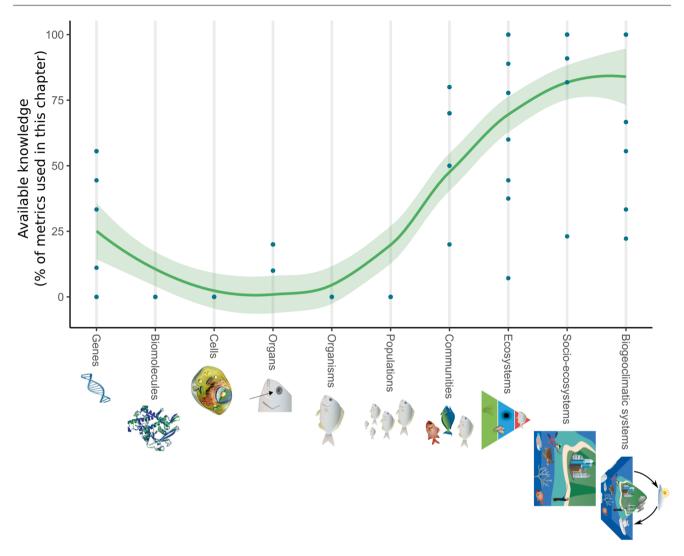

10.3.12 Overview of Coral Reef Biodiversity Metrics Across French Tropical Overseas

Coral reef systems across French tropical overseas differ in many aspects, as expressed by the disciplinary metrics used to assess biodiversity at the multiple scales of biological and ecological organization covered in this chapter, though data remains incomplete and unbalanced (Figs. 10.5–10.30). A multidimensional representation along the various ecological gradients with available data enables visualizing the degrees of similarity and magnitudes of variation between the different systems (Fig. 10.31). This representation distinguishes along a primary axis New Caledonia, with the largest coral reef system and highest rates of species richness and

habitat diversity, from the other French overseas that fall into three distinct groups along a secondary axis. On one side of this axis lies the densely populated and touristic systems with a status of overseas department of Martinique, Guadeloupe, and Reunion, contrasting with the other side of less densely populated systems of French Polynesia and Wallis and Futuna in the South Pacific and the uninhabited systems of Clipperton and Scattered Islands, and between the two extremes is the grouping of Saint Martin, Saint Barthelemy, Mayotte, and French Guiana. Along this secondary axis, the less densely populated systems are also characterized by stronger ties to the reef through higher rates of coastal protection and fish catch and higher ecosystem health as reflected by ocean health and coral bleaching indices than the more densely populated localities. While every coral reef system is unique, this multidimensional representation underscores how much New Caledonia differs from other systems, standing as a singular hotspot for coral reef biodiversity. A deeper exploration of coral reef biodiversity is necessary to further our understanding of biodiversity hotspots and their preservation, in French tropical overseas and globally.


10.3.13 Knowledge Gaps

Our synthesis identifies a generally positive correlation between the bioecological scale of organization of coral reef life forms and the level of knowledge available (Figs. 10.32


Fig. 10.31 Comparisons of coral reef systems across French tropical overseas. Principal component analysis including all biodiversity metrics considered in this study at the community, ecosystem, socioecosystem, and biogeoclimatic system levels of organization. Note that the distributions of the overseas systems and biodiversity variables are calculated in different spaces. The juxtaposition of the two provides

information on the relative position of the overseas along the variables rather than an absolute position. Missing values were estimated using R's missMDA package tools (Husson and Josse 2020). The lower scales of genes, molecules, cells, organs, organisms, and populations are not included due to limitations in data availability

Fig. 10.32 Summarized state of knowledge on coral reef biodiversity by scale of biological and ecological organization and across French tropical overseas. Proportions of knowledge and knowledge gaps are

estimated based on data completeness for the different metrics presented in Figs. 10.5–10.30, which is in part influenced by data accessibility for the purpose of the present study

Fig. 10.33 Relationship between the state of knowledge (% of acquired data) and scale of biological and ecological organization, based on Fig. 10.32. Percentage of knowledge is estimated based on

data completeness for the different metrics presented in Figs. 10.5–10.30, which is in part influenced by data accessibility for the purpose of the present study

and 10.33), which accords with the young age of scientific disciplines and limitations in exploring biodiversity at smaller spatial scales, although genetic and molecular approaches are becoming more accessible. Similarly, little data is available for small and cryptic organisms such as bacteria, viruses, and fungi, while ecologically key and emblematic macroorganisms such as reef-building corals and fishes have been more studied. Global databases play a central role in synthesizing and making such knowledge available, though are still lacking for many biological groups and disciplines. Coral reef biodiversity metrics are also unbalanced in space as reflected among French tropical overseas, although such shortcomings are also observed in other types of ecosystems where knowledge and conservation are highly skewed (Guerra et al. 2020; Maxwell et al. 2020). Little is known on cryptic and mesophotic habitats, which are considered potential refuges for corals in a warmer climate and

whose exploration is only starting, including the recently discovered Great Amazonian Reef, parts of which lie in French Guinea waters (Moura et al. 2016; Francini-Filho et al. 2018; Pérez-Rosales et al. 2021b; Pérez-Rosales et al. 2022). There are still major knowledge gaps in most if not all metrics of biodiversity, and some estimations come with significant uncertainties, including recent questioning on species delineation and the speed of acclimation versus adaptation processes (Galtier 2019; Gibert et al. 2019). Overall, most of our knowledge relates to the state of coral reef biodiversity and its distribution as measured at different scales, whereas our understanding of driving mechanisms controlling biodiversity levels across scales and their dynamics remains yet too limited to enable predictions and therefore more proactive management strategies for biodiversity resiliency in the face of environmental changes (Rogers et al. 2015; Donovan et al. 2023). Nevertheless, some coral reef sites stand out as world references for exploring coral reef biodiversity and its drivers Thirukanthan et al. 2023. This includes portions of the Great Barrier Reef in Australia, such as Lizard Island (https://australian.museum/), the island of Moorea in French Polynesia, which is arguably the most studied reef system on the planet, thanks to two international field research stations acting as hubs for coral reef studies (www.criobe.pf, www.moorea.berkeley.edu) and coral reefs near Noumea in New Caledonia that have benefited from locally based scientific attention since the 1940s (www.ird. fr/nouvelle-caledonie).

10.3.14 Conclusions

Coral reef biodiversity expands in a multitude of dimensions associated with the various scientific disciplines and metrics used to characterize the variability of life forms across scales of biological and ecological organization. While biodiversity metrics are known to differ among regions, declining with distance from the center of marine biodiversity in Southeast Asia, our synthesis highlights how they also vary with the size of coral reef systems and the extent of habitats and diversity of ecological niches they provide. The exploration of coral reef biodiversity is a challenging endeavor that concentrates the efforts of an active global research community, as many knowledge gaps remain with significant unbalance between scientific disciplines and regions, alongside the decline in biodiversity levels, with life forms disappearing before they are characterized. In the face of the current biodiversity crisis, our knowledge of coral reef biodiversity appears quite superficial compared to the in-depth understanding needed to anticipate, detect, and counter ecological declines. This entails new research avenues, particularly transdisciplinary approaches to bridge our understanding of biological, ecological, and biogeoclimatic processes across scales of bioecological organization, endeavors that remain largely insufficient to comprehend the mechanisms behind biodiversity production and maintenance and safeguard their future (Jones et al. 2015; Smallegange et al. 2017; Carturan et al. 2020; Condie et al. 2021; Ouédraogo et al. 2021; Van Woesik et al. 2022; Carlot et al. 2023; Ouédraogo et al. 2023). Unanswered questions critical to human survival throughout the twenty-first century pertain to the carrying capacity of ecological systems and the effectiveness of societal paths toward sustainability. Due to their unique biodiversity and associated level of scientific attention, coral reef systems can be key to addressing these questions. In the global landscape of coral reef biodiversity, French tropical overseas are major players in this realm, thanks to their unique distribution, coverage, and a robust management and research network supported by the public system (Cocquempot et al. 2019). This unique combination provides a large set of data-rich systems that allow exploration of how

biodiversity takes form at different scales of bioecological organization and interacts with human and climatic environments. While coral reef biodiversity has received increased national and international attention, restrictions in scientific research funding remain a primary impediment to advance understanding and hence conservation of biodiversity in coral reefs and globally (Huang and Huang 2018; Thirukanthan et al. 2023).

References

Adam TC, Burkepile DE, Holbrook SJ, Carpenter RC, Claudet J, Loiseau C, Thiault L, Brooks AJ, Washburn L, Schmitt RJ (2021) Running head: nutrient enrichment on a coral reef landscape-scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts. Ecol Appl 31:e2227

Adjeroud M, Kayal M, Penin L (2017) Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. Mar Anim For 549:569

Adjeroud M, Kayal M, Iborra-Cantonnet C, Vercelloni J, Bosserelle P, Liao V, Chancerelle Y, Claudet J, Penin L (2018a) Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci Rep 8:9680. https://doi.org/10.1038/s41598-018-27891-3

Adjeroud M, Kayal M, Peignon C, Juncker M, Mills SC, Beldade R, Dumas P (2018b) Ephemeral and localized outbreaks of the coral predator Acanthaster cf. solaris in the southwestern lagoon of New Caledonia. Zool Stud 57

Adjeroud M, Peignon C, Gauliard C, Penin L, Kayal M (2022) Extremely high but localized pulses of coral recruitment in the southwestern lagoon of New Caledonia and implications for conservation. Mar Ecol Prog Ser 692:67–79. https://doi.org/10.3354/ meps14073

Aisyah A, Triharyuni S (2017) Production, size distribution, and length weight relationship of lobster landed in the south coast of Yogyakarta, Indonesia. Indones Fish Res J 16:15–24

Akiona AK, Zgliczynski BJ, Sandin SA (2022) Length-weight relationships for 18 coral reef fish species from the Central Pacific. J Appl Ichthyol 38:118–122

Alexander JB, Bunce M, White N, Wilkinson SP, Adam AA, Berry T, Stat M, Thomas L, Newman SJ, Dugal L (2020) Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39:159–171

Alves de Souza C, Mardones JI, Yñiguez AT, Le Bihan V, Guillotreau P, Gatti CMI, Richlen ML, Larsen J, Berdalet E (2022) Harmful Algae. In: Urban ER Jr, Ittekkot V (eds) Blue economy: an ocean science perspective. Springer Nature, Singapore, pp 287–317

Andréfouët S, Chagnaud N, Kranenburg C, Chauvin C (2008) Atlas des récifs coralliens de France d'outre-mer

Andréfouet S, Derville S, Buttin J, Dirberg G, Wabnitz CC, Garrigue C, Payri CE (2021) Nation-wide hierarchical and spatially-explicit framework to characterize seagrass meadows in new-Caledonia, and its potential application to the indo-Pacific. Mar Pollut Bull 173:113036

Andrello M, Darling ES, Wenger A, Suárez-Castro AF, Gelfand S, Ahmadia GN (2022) A global map of human pressures on tropical coral reefs. Conserv Lett 15:e12858

Anthony KRN, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R, Eakin CM, Game ET, Gooch M, Graham NAJ, Green A, Heron SF, van Hooidonk R, Knowland C, Mangubhai S, Marshall N, Maynard JA, McGinnity P, McLeod E, PeterJ M, Nyström M, Obura D, Oliver J, Possingham HP, Pressey RL, Rowlands GP, Tamelander J, Wachenfeld D, Wear S (2015) Operationalizing resilience for

- adaptive coral reef management under global environmental change. Glob Change Biol 21:48–61. https://doi.org/10.1111/gcb.12700
- Aston EA, Duce S, Hoey AS, Ferrari R (2022) A protocol for extracting structural metrics from 3D reconstructions of corals. Front Mar Sci 9
- Babcock RC, Plagányi ÉE, Condie SA, Westcott DA, Fletcher CS, Bonin MC, Cameron D (2020) Suppressing the next crown-ofthorns outbreak on the great barrier reef. Coral Reefs 39:1233–1244
- Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci 115:6506–6511
- Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811. https://doi.org/10.1111/j.1365-294X.2008.03787.x
- Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F (2018) The global flood protection savings provided by coral reefs. Nat Commun 9:2186
- Bellwood DR, Hughes TP, Connolly SR, Tanner J (2005) Environmental and geometric constraints on indo-Pacific coral reef biodiversity. Ecol Lett 8:643–651
- Benzoni F (2019) Chapitre 5. Les coraux de récifs de Nouvelle-Calédonie, un patrimoine diversifié et précieux. In: Payri CE (ed) Nouvelle-Calédonie: Archipel de corail. IRD Éditions, Marseille, pp 49–59
- Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linnean Soc 160:421–456. https:// doi.org/10.1111/j.1096-3642.2010.00622.x
- Bertrand B, Vercauteren M, Cunha E, Bécart A, Gosset D, Hédouin V (2022) Automated age-at-death estimation by cementochronology: essential application or additional complication? Am J Biol Anthropol 179:314–326
- Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N (2020) Defining coral bleaching as a microbial dysbiosis within the coral holobiont. Microorganisms 8:1682
- Bollati E, D'Angelo C, Alderdice R, Pratchett M, Ziegler M, Wiedenmann J (2020) Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Curr Biol 30:2433–2445
- Bongaerts P, Dubé CE, Prata KE, Gijsbers JC, Achlatis M, Hernandez-Agreda A (2021) Reefscape genomics: leveraging advances in 3D imaging to assess Fine-scale patterns of genomic variation on coral reefs. Front Mar Sci 8
- Borsa P, Cornaille M, Richer de Forges B (2023) Shark culling at a world heritage site. Nature 620:950–950
- Bos AR, Gumanao GS, Salac FN (2008) A newly discovered predator of the crown-of-thorns starfish. Coral Reefs 27:581–581
- Boucaud-Maitre D, Ferracci S, Pelczar S (2017) Quels sont les facteurs pronostiques de recours des urgentistes aux centres antipoison et de toxicovigilance? Étude rétrospective de cohorte en Guadeloupe entre 2013 et 2015. Toxicol Anal Clin 29:251–256
- Boyce DG, Lotze HK, Tittensor DP, Carozza DA, Worm B (2020) Future Ocean biomass losses may widen socioeconomic equity gaps. Nat Commun 11:2235. https://doi.org/10.1038/s41467-020-15708-9
- Bozec Y-M, O'Farrell S, Bruggemann JH, Luckhurst BE, Mumby PJ (2016) Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc Natl Acad Sci 113:4536–4541
- Bradshaw CJ, Ehrlich PR, Beattie A, Ceballos G, Crist E, Diamond J, Dirzo R, Ehrlich AH, Harte J, Harte ME (2021) Underestimating the challenges of avoiding a ghastly future. Front Conserv Sci 1:9
- Bramanti L, Edmunds PJ (2016) Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs 35:543–553
- Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019a) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 17:445–454

- Brandl SJ, Tornabene L, Goatley CH, Casey JM, Morais RA, Côté IM, Baldwin CC, Parravicini V, Schiettekatte NM, Bellwood DR (2019b) Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364:1189–1192
- Brodie J, Waterhouse J (2012) A critical review of environmental management of the 'not so Great' Barrier reef. Estuar Coast Shelf Sci 104:1–22
- Burke L, Spalding M (2022) Shoreline protection by the world's coral reefs: mapping the benefits to people, assets, and infrastructure. Mar Policy 146:105311
- Burke S, Pottier P, Lagisz M, Macartney EL, Ainsworth T, Drobniak SM, Nakagawa S (2023) The impact of rising temperatures on the prevalence of coral diseases and its predictability: a global metaanalysis. Ecol Lett 26:1466–1481
- Burns C, Bollard B, Narayanan A (2022) Machine-learning for mapping and monitoring shallow coral reef habitats. Remote Sens 14:2666
- Cabral RB, Mayorga J, Clemence M, Lynham J, Koeshendrajana S, Muawanah U, Nugroho D, Anna Z, Mira GA, Zulbainarni N, Gaines SD, Costello C (2018) Rapid and lasting gains from solving illegal fishing. Nat Ecol Evol 2:650–658. https://doi.org/10.1038/s41559-018-0499-1
- Caley MJ, Fisher R, Mengersen K (2014) Global species richness estimates have not converged. Trends Ecol Evol 29:187–188. https://doi.org/10.1016/j.tree.2014.02.002
- Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne PW, Trisos C, Romero J, Aldunce P, Barrett K, Blanco G, Cheung WWL, Connors S, Denton F, Diongue-Niang A, Dodman D, Garschagen M, Geden O, Hayward B, Jones C, Jotzo F, Krug T, Lasco R, Lee Y-Y, Masson-Delmotte V, Meinshausen M, Mintenbeck K, Mokssit A. Otto FEL, Pathak M, Pirani A, Poloczanska E, Pörtner H-O, Revi A, Roberts DC, Roy J, Ruane AC, Skea J, Shukla PR, Slade R, Slangen A, Sokona Y, Sörensson AA, Tignor M, Van Vuuren D, Wei Y-M, Winkler H, Zhai P, Zommers Z, Hourcade J-C, Johnson FX, Pachauri S, Simpson NP, Singh C, Thomas A, Totin E, Arias P, Bustamante M, Elgizouli I, Flato G, Howden M, Méndez-Vallejo C, Pereira JJ, Pichs-Madruga R, Rose SK, Saheb Y, Sánchez Rodríguez R, Ürge-Vorsatz D, Xiao C, Yassaa N, Alegría A, Armour K, Bednar-Friedl B, Blok K, Cissé G, Dentener F, Eriksen S, Fischer E, Garner G, Guivarch C, Haasnoot M, Hansen G, Hauser M, Hawkins E, Hermans T, Kopp R, Leprince-Ringuet N, Lewis J, Lev D, Ludden C, Niamir L, Nicholls Z, Some S, Szopa S, Trewin B, Van Der Wijst K-I, Winter G, Witting M, Birt A, Ha M, Romero J, Kim J, Haites EF, Jung Y, Stavins R, Birt A, Ha M, Orendain DJA, Ignon L, Park S, Park Y, Reisinger A, Cammaramo D, Fischlin A, Fuglestvedt JS, Hansen G, Ludden C, Masson-Delmotte V, Matthews JBR, Mintenbeck K, Pirani A, Poloczanska E, Leprince-Ringuet N, Péan C (2023) IPCC, 2023: Climate Change 2023: Synthesis Report. In: Core Writing Team, Lee H, Romero J (eds) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland
- Cannon SE, Donner SD, Liu A, González Espinosa PC, Baird AH, Baum JK, Bauman AG, Beger M, Benkwitt CE, Birt MJ (2023) Macroalgae exhibit diverse responses to human disturbances on coral reefs, vol 29. Glob Change Biol, p 3318
- Cantalice KM, Alvarado-Ortega J, Bellwood DR, Siqueira AC (2022) Rising from the ashes: the biogeographic origins of modern coral reef fishes. Bioscience 72:769–777. https://doi.org/10.1093/biosci/ biac045
- Carlot J, Kayal M, Lenihan HS, Brandl SJ, Casey JM, Adjeroud M, Cardini U, Merciere A, Espiau B, Barneche DR (2021) Juvenile corals underpin coral reef carbonate production after disturbance. Glob Change Biol 27:2623–2632
- Carlot J, Vousdoukas M, Rovere A, Karambas T, Lenihan HS, Kayal M, Adjeroud M, Pérez-Rosales G, Hedouin L, Parravicini V (2023)

- Coral reef structural complexity loss exposes coastlines to waves. Sci Rep 13:1683
- Carroll RA, Copp RB, Davis AR, Keyzers R, Prinsep RM (2019) Marine natural products. Nat Prod Rep 36:122–173. https://doi. org/10.1039/C8NP00092A
- Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2023) Marine natural products. Nat Prod Rep 40:275
- Carturan BS, Pither J, Maréchal J-P, Bradshaw CJ, Parrott L (2020) Combining agent-based, trait-based and demographic approaches to model coral-community dynamics. elife 9:e55993
- Castro-Cadenas MD, Loiseau C, Reimer JM, Claudet J (2022) Tracking changes in social-ecological systems along environmental disturbances with the ocean health index. Sci Total Environ 841:156423
- Castro-Sanguino C, Bozec Y-M, Condie SA, Fletcher CS, Hock K, Roelfsema C, Westcott DA, Mumby PJ (2023) Control efforts of crown-of-thorns starfish outbreaks to limit future coral decline across the Great Barrier Reef. Ecosphere 14:e4580
- Cernuda-Cernuda R, García-Fernández JM (1996) Structural diversity of the ordinary and specialized lateral line organs. Microsc Res Tech 34:302–312
- Chase JM, McGill BJ, McGlinn DJ, May F, Blowes SA, Xiao X, Knight TM, Purschke O, Gotelli NJ (2018) Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol Lett 21:1737–1751
- Chinain M, Gatti CM, Martin-Yken H, Mélanie R, Darius HT (2020) Ciguatera poisoning: An increasing burden for Pacific Island communities in light of climate change. Clim Change Mar Freshw Toxins 2nd Ed Bot LM Louzao MC Vilariño N Eds 369–428
- Chinain M, Gatti CMI, Darius HT, Quod J-P, Tester PA (2021) Ciguatera poisonings: a global review of occurrences and trends. Harmful Algae 102:101873
- Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT (2023) Ciguatera poisoning in French Polynesia: a review of the distribution and toxicity of *Gambierdiscus* spp., and related impacts on food web components and human health. Harmful Algae 129:102525. https://doi.org/10.1016/j.hal.2023.102525
- Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287
- Cinner JE, Maire E, Huchery C, MacNeil MA, Graham NA, Mora C, McClanahan TR, Barnes ML, Kittinger JN, Hicks CC (2018) Gravity of human impacts mediates coral reef conservation gains. Proc Natl Acad Sci 115:E6116–E6125
- Clark TD, Raby GD, Roche DG, Binning SA, Speers-Roesch B, Jutfelt F, Sundin J (2020) Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577:370–375. https://doi.org/10.1038/s41586-019-1903-y
- Cleguer C, Kelly N, Tyne J, Wieser M, Peel D, Hodgson A (2021) A novel method for using small unoccupied aerial vehicles to survey wildlife species and model their density distribution. Front Mar Sci 8:640338
- Clements KD, German DP, Piché J, Tribollet A, Choat JH (2017) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–751
- Cocquempot L, Delacourt C, Paillet J, Riou P, Aucan J, Castelle B, Charria G, Claudet J, Conan P, Coppola L (2019) Coastal Ocean and nearshore observation: a French case study. Front Mar Sci 6:324
- Collin A, Andel M, Lecchini D, Claudet J (2021) Mapping sub-metre 3D Land-Sea coral Reefscapes using Superspectral WorldView-3 satellite Stereoimagery. In: Oceans. MDPI, pp 315–329
- Comte A, Pendleton LH (2018) Management strategies for coral reefs and people under global environmental change: 25 years of scientific research. J Environ Manag 209:462–474. https://doi.org/10.1016/j. jenvman.2017.12.051

- Condie SA, Plagányi ÉE, Morello EB, Hock K, Beeden R (2018) Great barrier reef recovery through multiple interventions. Conserv Biol 32:1356–1367. https://doi.org/10.1111/cobi.13161
- Condie SA, Anthony KR, Babcock RC, Baird ME, Beeden R, Fletcher CS, Gorton R, Harrison D, Hobday AJ, Plagányi ÉE (2021) Large-scale interventions may delay decline of the Great Barrier Reef. R Soc Open Sci 8:201296
- Connell JH (1978) Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199:1302–1310
- Costello MJ, May RM, Stork NE (2013) Can we name earth's species before they go extinct? Science 339:413–416. https://doi.org/10.1126/science.1230318
- Côté IM, Smith NS (2018) The lionfish Pterois sp. invasion: has the worst-case scenario come to pass? J Fish Biol 92:660–689
- Cowan Z-L, Pratchett M, Messmer V, Ling S (2017) Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks. Diversity 9:7
- Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40:209–224
- Cramer KL, Donovan MK, Jackson JB, Greenstein BJ, Korpanty CA, Cook GM, Pandolfi JM (2021) The transformation of Caribbean coral communities since humans. Ecol Evol 11:10098–10118
- Cravatte S, Kestenare E, Eldin G, Ganachaud A, Lefèvre J, Marin F, Menkes C, Aucan J (2015) Regional circulation around New Caledonia from two decades of observations. J Mar Syst 148:249–271
- Cresswell AK, Thomson DP, Haywood MDE, Renton M (2020) Frequent hydrodynamic disturbances decrease the morphological diversity and structural complexity of 3D simulated coral communities. Coral Reefs 39:1147–1161. https://doi.org/10.1007/s00338-020-01947-1
- Cresswell AK, Renton M, Langlois TJ, Thomson DP, Lynn J, Claudet J (2023) Coral reef state influences resilience to acute climate-mediated disturbances. Glob Ecol Biogeogr geb.13771. https://doi.org/10.1111/geb.13771
- Cuif M, Kaplan DM, Lefèvre J, Faure VM, Caillaud M, Verley P, Vigliola L, Lett C (2014) Wind-induced variability in larval retention in a coral reef system: a biophysical modelling study in the south-West lagoon of New Caledonia. Prog Oceanogr 122:105–115. https://doi.org/10.1016/j.pocean.2013.12.006
- D'agata S, Mouillot D, Wantiez L, Friedlander AM, Kulbicki M, Vigliola L (2016) Marine reserves lag behind wilderness in the conservation of key functional roles. Nat Commun 7:12000
- Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x
- Darling ES, Graham NA, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575
- Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, Cinner JE, Mora C, Hicks CC, Maire E, Puotinen M, Skirving WJ, Adjeroud M, Ahmadia G, Arthur R, Bauman AG, Beger M, Berumen ML, Bigot L, Bouwmeester J, Brenier A, Bridge TCL, Brown E, Campbell SJ, Cannon S, Cauvin B, Chen CA, Claudet J, Denis V, Donner S, Estradivari FN, Feary DA, Fenner D, Fox H, Franklin EC, Friedlander A, Gilmour J, Goiran C, Guest J, Hobbs J-PA, Hoey AS, Houk P, Johnson S, Jupiter SD, Kayal M, Kuo C, Lamb J, Lee MAC, Low J, Muthiga N, Muttaqin E, Nand Y, Nash KL, Nedlic O, Pandolfi JM, Pardede S, Patankar V, Penin L, Ribas-Deulofeu L, Richards Z, Roberts TE, Rodgers KS, Safuan CDM, Sala E, Shedrawi G, Sin TM, Smallhorn-West P, Smith JE, Sommer B, Steinberg PD, Sutthacheep M, Tan CHJ, Williams GJ, Wilson S, Yeemin T, Bruno JF, Fortin M-J, Krkosek

- M, Mouillot D (2019) Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat Ecol Evol 3:1341–1350. https://doi.org/10.1038/s41559-019-0953-8
- Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. Murray, London
- Daskin JH, Pringle RM (2018) Warfare and wildlife declines in Africa's protected areas. Nature 553:328–332
- DASS (2018) Situation sanitaire en Nouvelle-Calédonie La ciguatera de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a Marine Desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981
- De'ath G, Moran PJ (1998) Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef:: 1: Patterns of activity. J Exp Mar Biol Ecol 220:83–106. https://doi.org/10.1016/S0022-0981(97)00085-3
- De'Ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci 109:17995–17999
- Deaker DJ, Byrne M (2022) Crown of thorns starfish life-history traits contribute to outbreaks, a continuing concern for coral reefs. Emerg Top Life Sci 6:67–79
- Deaker DJ, Agüera A, Lin H-A, Lawson C, Budden C, Dworjanyn SA, Mos B, Byrne M (2020) The hidden army: corallivorous crown-of-thorns seastars can spend years as herbivorous juveniles. Biol Lett 16:20190849
- Desbiens AA, Mumby PJ, Dworjanyn S, Plagányi ÉE, Uthicke S, Wolfe K (2023) Novel rubble-dwelling predators of herbivorous juvenile crown-of-thorns starfish (Acanthaster sp.). Coral Reefs 42:579–591. https://doi.org/10.1007/s00338-023-02364-w
- Dietzel A, Bode M, Connolly SR, Hughes TP (2020) Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proc R Soc B Biol Sci 287:20201432. https://doi.org/10.1098/rspb.2020.1432
- Dietzel A, Bode M, Connolly SR, Hughes TP (2021) The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat Ecol Evol 5:663–669. https://doi.org/10.1038/s41559-021-01393-4
- Dimoff SA, Halliday WD, Pine MK, Tietjen KL, Juanes F, Baum JK (2021) The utility of different acoustic indicators to describe biological sounds of a coral reef soundscape. Ecol Indic 124:107435. https://doi.org/10.1016/j.ecolind.2021.107435
- Ditria EM, Buelow CA, Gonzalez-Rivero M, Connolly RM (2022) Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: a perspective. Front Mar Sci 9:918104
- Dittami SM, Arboleda E, Auguet J-C, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D (2021) A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 9:e10911
- Done TJ, DeVantier LM, Turak E, Fisk DA, Wakeford M, Van Woesik R (2010) Coral growth on three reefs: development of recovery benchmarks using a space for time approach. Coral Reefs 29:815–833
- Donovan MK, Alves C, Burns J, Drury C, Meier OW, Ritson-Williams R, Cunning R, Dunn RP, Goodbody-Gringley G, Henderson LM, Knapp ISS, Levy J, Logan CA, Mudge L, Sullivan C, Gates RD, Asner GP (2023) From polyps to pixels: understanding coral reef resilience to local and global change across scales. Landsc Ecol 38:737–752. https://doi.org/10.1007/s10980-022-01463-3
- Doropoulos C, Roff G, Bozec Y-M, Zupan M, Werminghausen J, Mumby PJ (2016) Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr 86:20–44
- Doropoulos C, Bozec Y-M, Gouezo M, Priest MA, Thomson DP, Mumby PJ, Roff G (2022) Cryptic coral recruits as dormant 'seed

- banks': an unrecognised mechanism of rapid reef recovery. Ecology 103:1–14
- Duarte C, Marbá N, Agawin N, Cebrián J, Enriquez S, Fortes M, Gallegos M, Merino M, Olesen B, Sand-Jensen K, Uri J, Vermaat J (1994) Reconstruction of seagrass dynamics: age determinations and associated tools for the seagrass ecologist. Mar Ecol Prog Ser 107:195–209. https://doi.org/10.3354/meps107195
- Dubé CE, Boissin E, Mercière A, Planes S (2020) Parentage analyses identify local dispersal events and sibling aggregations in a natural population of Millepora hydrocorals, a free-spawning marine invertebrate. Mol Ecol 29:1508–1522. https://doi.org/10.1111/ mec.15418
- Dubois M, Gascuel D, Coll M, Claudet J (2019) Recovery debts can be revealed by ecosystem network-based approaches. Ecosystems 22:658–676. https://doi.org/10.1007/s10021-018-0294-5
- Duprey NN, Wang TX, Kim T, Cybulski JD, Vonhof HB, Crutzen PJ, Haug GH, Sigman DM, Martínez-García A, Baker DM (2020) Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River estuary. Glob Change Biol 26:1338–1353. https://doi.org/10.1111/gcb.14923
- Eddy T, Lam V, Reygondeau G, Cisneros-Montemayor A, Greer K, Palomares M, Bruno J, Ota Y, Cheung W (2021) Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4:1278. https://doi.org/10.1016/j.oneear.2021.08.016
- Edmunds PJ, Burgess SC, Putnam HM, Baskett ML, Bramanti L, Fabina NS, Han X, Lesser MP, Madin JS, Wall CB (2014) Evaluating the causal basis of ecological success within the scleractinia: an integral projection model approach. Mar Biol 161:2719–2734
- Edmunds PJ, Leichter JJ, Johnston EC, Tong EJ, Toonen RJ (2016) Ecological and genetic variation in reef-building corals on four S ociety I slands. Limnol Oceanogr 61:543–557
- Elise S, Urbina-Barreto I, Pinel R, Mahamadaly V, Bureau S, Penin L, Adjeroud M, Kulbicki M, Bruggemann JH (2019) Assessing key ecosystem functions through soundscapes: a new perspective from coral reefs. Ecol Indic 107:105623. https://doi.org/10.1016/j.ecolind.2019.105623
- Fabricius KE, Okaji K, De'Ath G (2010) Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:593–605
- FAO (2022) The state of world fisheries and aquaculture 2022: towards blue transformation. FAO, Rome
- Ferrario F, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun 5:3794
- Fiddes SL, Woodhouse MT, Utembe S, Schofield R, Alexander SP, Alroe J, Chambers SD, Chen Z, Cravigan L, Dunne E, Humphries RS, Johnson G, Keywood MD, Lane TP, Miljevic B, Omori Y, Protat A, Ristovski Z, Selleck P, Swan HB, Tanimoto H, Ward JP, Williams AG (2022) The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the great barrier reef: a modelling study. Atmospheric Chem Phys 22:2419–2445. https://doi.org/10.5194/acp-22-2419-2022
- Fine ML, Parmentier E (2015) Mechanisms of fish sound production. In: Ladich F (ed) Sound communication in fishes. Springer, Vienna, pp 77–126
- Fisher R, O'Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE, Caley MJ (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25:500–505
- Flammang BE (2014) The fish tail as a derivation from axial musculoskeletal anatomy: an integrative analysis of functional morphology. Zoology 117:86–92. https://doi.org/10.1016/j.zool.2013.10.001
- Francini-Filho RB, Asp NE, Siegle E, Hocevar J, Lowyck K, D'Avila N, Vasconcelos AA, Baitelo R, Rezende CE, Omachi CY (2018) Perspectives on the Great Amazon Reef: extension, biodiversity, and threats. Front Mar Sci 142

- Galand PE, Ruscheweyh H-J, Salazar G, Hochart C, Henry N, Hume BCC, Oliveira PH, Perdereau A, Labadie K, Belser C, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Armstrong EJ, Paz-García DA, Ziegler M, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Zoccola D, Voolstra CR, Thurber RV, Sunagawa S, Wincker P, Allemand D, Planes S (2023) Diversity of the Pacific Ocean coral reef microbiome. Nat Commun 14:3039. https://doi.org/10.1038/s41467-023-38500-x
- Galtier N (2019) Delineating species in the speciation continuum: a proposal. Evol Appl 12:657–663
- Gargominy O, Tercerie S, Régnier C, Ramage T, Dupont P, Daszkiewicz P, Poncet L (2022) TAXREF, référentiel taxonomique pour la France: méthodologie, mise en øeuvre et diffusion. PhD Thesis, PatriNat (OFB-CNRS-MNHN)
- Gatti CMI, Chinain M (2023) Bilan 2022 de la ciguatéra en Polynésie française. In: Inst Louis Malardé https://www.ilm.pf/actualites-ilm/ bilan-2022-de-la-ciguatera-en-polynesie-francaise/. Accessed 3 Sep 2023
- Gayon J (2016) From Mendel to epigenetics: history of genetics. C R Biol 339:225–230. https://doi.org/10.1016/j.crvi.2016.05.009
- Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG (2020) Insights about clinically approved and Preclinically investigated marine natural products. Curr Res Biotechnol 2:88–102. https://doi. org/10.1016/j.crbiot.2020.09.001
- Gibert P, Debat V, Ghalambor CK (2019) Phenotypic plasticity, global change, and the speed of adaptive evolution. Curr Opin Insect Sci 35:34–40
- Gil MA, Baskett ML, Munch SB, Hein AM (2020) Fast behavioral feedbacks make ecosystems sensitive to pace and not just magnitude of anthropogenic environmental change. Proc Natl Acad Sci 117:25580–25589
- Gilmour JP, Cook KL, Ryan NM, Puotinen ML, Green RH, Heyward AJ (2022) A tale of two reef systems: local conditions, disturbances, coral life histories, and the climate catastrophe. Ecol Appl 32:e2509
- Gingeras TR (2007) Origin of phenotypes: genes and transcripts. Genome Res 17:682–690. https://doi.org/10.1101/gr.6525007
- Gomez-Banderas J (2022) Marine natural products: a promising source of environmentally friendly antifouling agents for the maritime industries. Front Mar Sci 218
- González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M (2023) The evolution, assembly, and dynamics of marine Holobionts. Annu Rev Mar Sci 16
- González-Rivero M, Beijbom O, Rodriguez-Ramirez A, Bryant DEP, Ganase A, Gonzalez-Marrero Y, Herrera-Reveles A, Kennedy EV, Kim CJS, Lopez-Marcano S, Markey K, Neal BP, Osborne K, Reyes-Nivia C, Sampayo EM, Stolberg K, Taylor A, Vercelloni J, Wyatt M, Hoegh-Guldberg O (2020) Monitoring of coral reefs using artificial intelligence: a feasible and cost-effective approach. Remote Sens 12:489. https://doi.org/10.3390/rs12030489
- Gordon TA, Radford AN, Davidson IK, Barnes K, McCloskey K, Nedelec SL, Meekan MG, McCormick MI, Simpson SD (2019) Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat Commun 10:5414
- Gounand I, Little CJ, Harvey E, Altermatt F (2018) Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat Commun 9:4825
- Graham NA, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326
- Graham NAJ, Robinson JPW, Smith SE, Govinden R, Gendron G, Wilson SK (2020) Changing role of coral reef marine reserves in

- a warming climate. Nat Commun 11:2000. https://doi.org/10.1038/s41467-020-15863-z
- Gray LA, Bisonó León AG, Rojas FE, Veroneau SS, Slocum AH (2021) Caribbean-wide, negative emissions solution to Sargassum spp. low-cost collection device and sustainable disposal method. Phycology 1:49–75
- Gregory TR (2008) The evolution of complex organs. Evol Educ Outreach 1:358–389
- Guannel G, Arkema K, Ruggiero P, Verutes G (2016) The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS One 11:e0158094
- Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M (2020) Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 11:3870
- Guillaume MM, Séret B (2021) Observations of sharks (Elasmobranchii) at Europa Island, a remote marine protected area important for shark conservation in the southern Mozambique Channel. PLoS One 16:e0253867
- Guillemot N, Kulbicki M, Chabanet P, Vigliola L (2011) Functional redundancy patterns reveal non-random assembly rules in a speciesrich marine assemblage. PLoS One 6:e26735
- Haas AF, Guibert M, Foerschner A, Calhoun S, George E, Hatay M, Dinsdale E, Sandin SA, Smith JE, Vermeij MJ (2015) Can we measure beauty? Computational evaluation of coral reef aesthetics. PeerJ 3:e1390
- Halpern BS, Longo C, Hardy D, McLeod KL, Samhouri JF, Katona SK, Kleisner K, Lester SE, O'Leary J, Ranelletti M, Rosenberg AA, Scarborough C, Selig ER, Best BD, Brumbaugh DR, Chapin FS, Crowder LB, Daly KL, Doney SC, Elfes C, Fogarty MJ, Gaines SD, Jacobsen KI, Karrer LB, Leslie HM, Neeley E, Pauly D, Polasky S, Ris B, St Martin K, Stone GS, Sumaila UR, Zeller D (2012) An index to assess the health and benefits of the global ocean. Nature 488:615–620. https://doi.org/10.1038/nature11397
- Harris JA (1916) The variable desert. Sci Mon 3:41-50
- Hays GC, Ashworth JS, Barnsley MJ, Broderick AC, Emery DR, Godley BJ, Henwood A, Jones EL (2001) The importance of sand albedo for the thermal conditions on sea turtle nesting beaches. Oikos 93:87–94
- Heather FJ, Childs DZ, Darnaude AM, Blanchard JL (2018) Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata. PLoS One 13:e0196092
- Hedley JD, Roelfsema CM, Chollett I, Harborne AR, Heron SF, Weeks S, Skirving WJ, Strong AE, Eakin CM, Christensen TR (2016) Remote sensing of coral reefs for monitoring and management: a review. Remote Sens 8:118
- Hemingson CR, Cowman PF, Hodge JR, Bellwood DR (2019) Colour pattern divergence in reef fish species is rapid and driven by both range overlap and symmetry. Ecol Lett 22:190–199
- Hernández-Delgado EA (2015) The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: cumulative impacts and synergies. Mar Pollut Bull 101:5–28
- Heudier M, Mouillot D, Mannocci L (2023) Assessing the effects of coral reef habitat and marine protected areas on threatened megafauna using aerial surveys. Aquat Conserv Mar Freshw Ecosyst 33:286–297
- Hewson I, Ritchie IT, Evans JS, Altera A, Behringer D, Bowman E, Brandt M, Budd KA, Camacho RA, Cornwell TO (2023) A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea. Sci Adv 9:eadg3200
- Hock K, Wolff NH, Ortiz JC, Condie SA, Anthony KRN, Blackwell PG, Mumby PJ (2017) Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol 15:e2003355. https://doi.org/10.1371/jour-nal.pbio.2003355

- Hodge JR, Santini F, Wainwright PC (2020) Colour dimorphism in labrid fishes as an adaptation to life on coral reefs. Proc R Soc B 287:20200167
- Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158
- Holles S, Simpson S, Radford A, Berten L, Lecchini D (2013) Boat noise disrupts orientation behaviour in a coral reef fish. Mar Ecol Prog Ser 485:295–300. https://doi.org/10.3354/meps10346
- Houk P, Raubani J (2010) Acanthaster planci outbreaks in Vanuatu coincide with ocean productivity, furthering trends throughout the Pacific Ocean. J Oceanogr 66:435–438
- Huang M-H, Huang M-J (2018) An analysis of global research funding from subject field and funding agencies perspectives in the G9 countries. Scientometrics 115:833–847
- Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER, Meier R, Todd PA, Budd AF (2014a) Towards a phylogenetic classification of reef corals: the indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43:531–548. https://doi.org/10.1111/zsc.12061
- Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014b) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 171:277–355. https://doi.org/10.1111/zoj.12140
- Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249. https://doi.org/10.1890/0012-9658(2000)081[2241:SSEWBW]2.0.CO;2
- Hughes TP, Baird AH, Dinsdale EA, Harriott VJ, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2002a) Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology 83:436–451. https://doi.org/10.1890/0012-9658(2002)083[0436:DRVUMA]2.0.CO;2
- Hughes TP, Bellwood DR, Connolly SR (2002b) Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol Lett 5:775–784. https://doi.org/10.1046/j.1461-0248.2002.00383.x
- Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH (2017) Coral reefs in the Anthropocene. Nature 546:82–90
- Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83
- Husson F, Josse J (2020) missMDA: handling missing values with multivariate data analysis
- IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo
- IUCN comité français, OFB, MNHN (2020) La Liste rouge des espèces menacées en France – Chapitre des coraux constructeurs de récifs de La Réunion. de Mayotte et des îles Éparses, Paris
- Jacquet C, Gounand I, Altermatt F (2020) How pulse disturbances shape size-abundance pyramids. Ecol Lett 23:1014–1023
- Jamil S, Rahman M, Haider A (2021) Bag of features (BoF) based deep learning framework for bleached corals detection. Big Data Cogn Comput 5:53
- Januchowski-Hartley FA, Vigliola L, Maire E, Kulbicki M, Mouillot D (2020) Low fuel cost and rising fish price threaten coral reef wilderness. Conserv Lett 13:e12706
- Jiang J, Wang A, Deng X, Zhou W, Gan Q, Lu Y (2021) How Symbiodiniaceae meets the challenges of life during coral bleaching. Coral Reefs 40:1339–1353

- Jin K, Wang F, Chen D, Liu H, Ding W, Shi S (2019) A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series. Sci Data 6:139
- Jones NS, Ridgwell A, Hendy EJ (2015) Evaluation of coral reef carbonate production models at a global scale. Biogeosciences 12:1339–1356
- Jones LA, Mannion PD, Farnsworth A, Valdes PJ, Kelland S-J, Allison PA (2019) Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R Soc Open Sci 6:182111
- Juhel J-B, Vigliola L, Wantiez L, Letessier TB, Meeuwig JJ, Mouillot D (2019) Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior. Sci Rep 9:2897. https://doi.org/10.1038/s41598-018-37145-x
- Kayal M, Kayal E (2017) Colonies of the fire coral Millepora platyphylla constitute scleractinian survival oases during Acanthaster outbreaks in French Polynesia. Mar Biodivers 47:255–258. https:// doi.org/10.1007/s12526-016-0465-6
- Kayal M, Adjeroud M (2022) The war of corals: patterns, drivers and implications of changing coral competitive performances across reef environments. R Soc Open Sci 9:220003. https://doi.org/10.1098/ rsos.220003
- Kayal M, Lenihan HS (2025) Vacuums of the sea: ecological function of large coral reef benthic scavengers in suppressing crown-ofthorns starfish (COTS) outbreaks. Ideas Ecol Evol 18:1–31. https:// doi.org/10.24908/iee.2025.18.1.n
- Kayal M, Lenihan HS, Pau C, Penin L, Adjeroud M (2011) Associational refuges among corals mediate impacts of a crown-of-thorns starfish Acanthaster planci outbreak: indirect positive interactions in communities. Coral Reefs 30:827–837. https://doi.org/10.1007/ s00338-011-0763-1
- Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV (2012a) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 4:1–12
- Kayal M, Vercelloni J, de Loma TL, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M (2012b) Predator crown-of-thorns starfish (Acanthaster planci) outbreak, Mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 7:e47363. https://doi. org/10.1371/journal.pone.0047363
- Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG (2015a) Phylogenetic analysis of higherlevel relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. PeerJ 3:e1403. https://doi.org/10.7717/peerj.1403
- Kayal M, Vercelloni J, Wand MP, Adjeroud M (2015b) Searching for the best bet in life-strategy: a quantitative approach to individual performance and population dynamics in reef-building corals. Ecol Complex 23:73–84. https://doi.org/10.1016/j.ecocom.2015.07.003
- Kayal M, Ballard J, Adjeroud M (2017a) Multi-species consumer jams and the fall of guarded corals to crown-of-thorns seastar outbreaks. F1000Res 6:1991. https://doi.org/10.12688/f1000research.13118.2
- Kayal M, Bosserelle P, Adjeroud M (2017b) Bias associated with the detectability of the coral-eating pest crown-of-thorns seastar and implications for reef management. R Soc Open Sci 4:170396. https://doi.org/10.1098/rsos.170396
- Kayal M, Lenihan HS, Brooks AJ, Holbrook SJ, Schmitt RJ, Kendall BE (2018) Predicting coral community recovery using multi-species population dynamics models. Ecol Lett 21:1790–1799. https://doi. org/10.1111/ele.13153
- Kayal M, Lewis H, Ballard J, Kayal E (2019) Humanity and the 21 st century's resource gauntlet: a commentary on Ripple et al. 's article "World scientists' warning to humanity: a second notice". Rethink Ecol 4:21–30. https://doi.org/10.3897/rethinkingecology.4.32116

- Kayal M, Mevrel E, Ballard J (2023) Video transect-based coral demographic investigation. Coasts 3(4):370–382. https://doi.org/10.3390/coasts3040022
- Konopka A, Wilkins M (2012) Application of meta-transcriptomics and –proteomics to analysis of in situ physiological state. Front Microbiol 3
- Kramer N, Guan J, Chen S, Wangpraseurt D, Loya Y (2022) Morphofunctional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths. Commun Biol 5:1–11. https://doi.org/10.1038/s42003-022-03829-4
- Kroon FJ, Lefèvre CD, Doyle JR, Patel F, Milton G, Severati A, Kenway M, Johansson CL, Schnebert S, Thomas-Hall P (2020) DNA-based identification of predators of the corallivorous Crown-of-Thorns Starfish (Acanthaster cf. solaris) from fish faeces and gut contents. Sci Rep 10:8184
- Kroon FJ, Barneche DR, Emslie MJ (2021) Fish predators control outbreaks of Crown-of-Thorns Starfish. Nat Commun 12:6986
- Kuempel CD, Tulloch VJ, Giffin AL, Simmons BA, Hagger V, Phua C, Hoegh-Guldberg O (2022) Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conserv Biol 36:e13856
- Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for new Caledonian lagoon fishes. Cybium 29:235–252
- Kuo N-W, Chen P-H (2009) Quantifying energy use, carbon dioxide emission, and other environmental loads from Island tourism based on a life cycle assessment approach. J Clean Prod 17:1324–1330
- Kusumoto B, Costello MJ, Kubota Y, Shiono T, Wei C-L, Yasuhara M, Chao A (2020) Global distribution of coral diversity: biodiversity knowledge gradients related to spatial resolution. Ecol Res 35:315–326
- Lamy T, Galzin R, Kulbicki M, Lison de Loma T, Claudet J (2016) Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs 35:293–302
- Langlois J, Guilhaumon F, Baletaud F, Casajus N, Braga CDA, Fleuré V, Kulbicki M, Loiseau N, Mouillot D, Renoult JP (2022) The aesthetic value of reef fishes is globally mismatched to their conservation priorities. PLoS Biol 20:e3001640
- Lassauce H, Chateau O, Erdmann MV, Wantiez L (2020) Diving behavior of the reef manta ray (Mobula alfredi) in New Caledonia: more frequent and deeper night-time diving to 672 meters. PLoS One 15:e0228815
- Lassauce H, Dudgeon CL, Armstrong AJ, Wantiez L, Carroll EL (2022) Evidence of fine-scale genetic structure for reef manta rays Mobula alfredi in New Caledonia. Endanger Species Res 47:249–264
- Lassauce H, Chateau O, Wantiez L (2023) Spatial ecology of the population of reef manta rays, Mobula alfredi (Krefft, 1868), in New Caledonia using satellite telemetry 1–horizontal behaviour. Fishes 8:328
- Lavrov DV, Pett W (2016) Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol Evol 8:2896–2913
- Lee S, Ford AK, Mangubhai S, Wild C, Ferse SC (2018) Length-weight relationship, movement rates, and in situ spawning observations of Holothuria scabra (sandfish) in Fiji
- Leinbach SE, Speare KE, Rossin AM, Holstein DM, Strader ME (2021) Energetic and reproductive costs of coral recovery in divergent bleaching responses. Sci Rep 11:23546
- Lemer S, Saulnier D, Gueguen Y, Planes S (2015) Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera. BMC Genomics 16:1–14
- Leray M, Béraud M, Anker A, Chancerelle Y, Mills SC (2012) Acanthaster planci outbreak: decline in coral health, coral size structure modification and consequences for obligate decapod assemblages. PLoS One 7:e35456

- Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34. https://doi.org/10.1186/1742-9994-10-34
- Leray M, Knowlton N, Ho S-L, Nguyen BN, Machida RJ (2019) GenBank is a reliable resource for 21st century biodiversity research. Proc Natl Acad Sci 116:22651–22656. https://doi.org/10.1073/pnas.1911714116
- Lester SE, Ruttenberg BI (2005) The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis. Proc R Soc B Biol Sci 272:585–591
- Lesturgie P, Braun CD, Clua E, Mourier J, Thorrold SR, Vignaud T, Planes S, Mona S (2023) Like a rolling stone: colonization and migration dynamics of the gray reef shark (Carcharhinus amblyrhynchos). Ecol Evol 13:e9746
- Levin SA (2000) Encyclopedia of biodiversity. Elsevier Science
- Levy S, Elek A, Grau-Bové X, Menéndez-Bravo S, Iglesias M, Tanay A, Mass T, Sebé-Pedrós A (2021) A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184:2973–2987
- Logan A (1984) Interspecific aggression in hermatypic corals from Bermuda. Coral Reefs 3:131–138
- López-García P, Moreira D (2023) The symbiotic origin of the eukaryotic cell. C R Biol 346:55–73. https://doi.org/10.5802/crbiol.118
- Losfeld G, L'huillier L, Fogliani B, Jaffré T, Grison C (2015) Mining in New Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res 22:5592–5607
- Løvholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2012) Tsunami hazard and exposure on the global scale. Earth-Sci Rev 110:58–73
- Lutzenkirchen LL, Duce SJ, Bellwood DR (2023) The global biogeography of reef morphology. Glob Ecol Biogeogr 32:1353
- Madin JS, Baird AH, Dornelas M, Connolly SR (2014) Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol Lett 17:1008–1015
- Maillaud C, Tirard P, Borsa P, Guittonneau A-L, Fournier J, Nour M (2022) Shark attacks in New Caledonia from 1958 to 2020: a review of cases. Med Trop Sante Int 2:mtsi-v2i1
- Majoris JE, Foretich MA, Hu Y, Nickles KR, Di Persia CL, Chaput R, Schlatter E, Webb JF, Paris CB, Buston PM (2021) An integrative investigation of sensory organ development and orientation behavior throughout the larval phase of a coral reef fish. Sci Rep 11:12377. https://doi.org/10.1038/s41598-021-91640-2
- Manel S, Loiseau N, Andrello M, Fietz K, Goñi R, Forcada A, Lenfant P, Kininmonth S, Marcos C, Marques V (2019) Long-distance benefits of marine reserves: myth or reality? Trends Ecol Evol 34:342–354
- Manel S, Guerin P-E, Mouillot D, Blanchet S, Velez L, Albouy C, Pellissier L (2020) Global determinants of freshwater and marine fish genetic diversity. Nat Commun 11:692. https://doi.org/10.1038/ s41467-020-14409-7
- Marhaver KL (2011) Bleaching corals of two species appear to feed from neighboring algal turfs. Coral Reefs 30:651–651
- Marsh R, Addo KA, Jayson-Quashigah P-N, Oxenford HA, Maxam A, Anderson R, Skliris N, Dash J, Tompkins EL (2021) Seasonal predictions of holopelagic Sargassum across the tropical Atlantic accounting for uncertainty in drivers and processes: the SARTRAC ensemble forecast system. Front Mar Sci 8:722524
- Marshall NJ (2000) Communication and camouflage with the same 'bright'colours in reef fishes. Philos Trans R Soc Lond Ser B Biol Sci 355:1243–1248
- Maruska KP (2001) Morphology of the Mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Environ Biol Fish 60:47–75. https://doi.org/10.1023/A:1007647924559

- Matthews SA, Mellin C, Pratchett MS (2020) Larval connectivity and water quality explain spatial distribution of crown-of-thorns star-fish outbreaks across the Great Barrier Reef. In: Advances in marine biology. Elsevier, pp 223–258
- Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, Visconti P, Woodley S, Kingston N, Lewis E, Maron M, Strassburg BBN, Wenger A, Jonas HD, Venter O, Watson JEM (2020) Area-based conservation in the twenty-first century. Nature 586:217–227. https://doi.org/10.1038/s41586-020-2773-z
- McClanahan TR, Schroeder RE, Friedlander AM, Vigliola L, Wantiez L, Caselle JE, Graham NA, Wilson S, Edgar GJ, Stuart-Smith RD (2019) Global baselines and benchmarks for fish biomass: comparing remote reefs and fisheries closures. Mar Ecol Prog Ser 612:167–192
- McClanahan TR, Friedlander AM, Graham NA, Chabanet P, Bruggemann JH (2021) Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces. Aquat Conserv Mar Freshw Ecosyst 31:28–42
- McCook LJ, Ayling T, Cappo M, Choat JH, Evans RD, De Freitas DM, Heupel M, Hughes TP, Jones GP, Mapstone B (2010) Adaptive management of the great barrier reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc Natl Acad Sci 107:18278–18285
- McGowan H, Sturman A, Saunders M, Theobald A, Wiebe A (2019) Insights from a decade of research on coral reef—atmosphere energetics. J Geophys Res Atmospheres 124:4269–4282
- McGowan H, Lensky NG, Abir S, Saunders M (2022) Coral reef coupling to the atmospheric boundary layer through exchanges of heat, moisture, and momentum: case studies from tropical and desert fringing coral reefs. Front Mar Sci 9
- McIvor AL, Möller I, Spencer T, Spalding M (2012) Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International
- McKeon CS, Moore JM (2014) Species and size diversity in protective services offered by coral guard-crabs. PeerJ 2:e574
- McManus JW, Polsenberg JF (2004) Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–279
- McWilliam M, Hoogenboom MO, Baird AH, Kuo C-Y, Madin JS, Hughes TP (2018) Biogeographical disparity in the functional diversity and redundancy of corals. Proc Natl Acad Sci 115:3084–3089
- Mehner T, Attermeyer K, Brauns M, Brothers S, Hilt S, Scharnweber K, van Dorst RM, Vanni MJ, Gaedke U (2022) Trophic transfer efficiency in lakes. Ecosystems 25:1628–1652
- Mellin C, Aaron MacNeil M, Cheal AJ, Emslie MJ, Julian Caley M (2016) Marine protected areas increase resilience among coral reef communities. Ecol Lett 19:629–637
- Mellin C, Thompson A, Jonker MJ, Emslie MJ (2019) Cross-shelf variation in coral community response to disturbance on the great barrier reef. Diversity 11:38
- Mendel G (1865) Versuche uber pflanzen-hybriden. Vorgelegt Den Sitzungen
- Mills SC, Côté IM (2010) Crime and punishment in a roaming cleanerfish. Proc R Soc B Biol Sci 277:3617–3622
- Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233
- Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127
- Morais RA, Bellwood DR (2020) Principles for estimating fish productivity on coral reefs. Coral Reefs 39:1221–1231
- Morais RA, Connolly SR, Bellwood DR (2020) Human exploitation shapes productivity–biomass relationships on coral reefs. Glob Change Biol 26:1295–1305. https://doi.org/10.1111/gcb.14941
- Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR (2021) Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 19:e3001435

- Morat F, Wicquart J, Schiettekatte NMD, de Sinéty G, Bienvenu J, Casey JM, Brandl SJ, Vii J, Carlot J, Degregori S, Mercière A, Fey P, Galzin R, Letourneur Y, Sasal P, Parravicini V (2020) Individual back-calculated size-at-age based on otoliths from Pacific coral reef fish species. Sci Data 7:370. https://doi.org/10.1038/ s41597-020-00711-y
- Morin E, Gatti C, Bambridge T, Chinain M (2016) Ciguatera fish poisoning: incidence, health costs and risk perception on Moorea Island (society archipelago, French Polynesia). Harmful Algae 60:1–10
- Morrison TH, Adger N, Barnett J, Brown K, Possingham H, Hughes T (2020) Advancing coral reef governance into the Anthropocene. One Earth 2:64–74
- Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Silva JM Jr, Araujo BF (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252
- Mourier J, Vercelloni J, Planes S (2012) Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim Behav 83:389–401
- Mourier J, Buray N, Schultz JK, Clua E, Planes S (2013) Genetic network and breeding patterns of a sicklefin lemon shark (Negaprion acutidens) population in the Society Islands. French Polynesia PLoS One 8:e73899
- Mourier J, Maynard J, Parravicini V, Ballesta L, Clua E, Domeier ML, Planes S (2016) Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr Biol 26:2011–2016. https:// doi.org/10.1016/j.cub.2016.05.058
- Mugnai F, Meglécz E, Abbiati M, Bavestrello G, Bertasi F, Bo M, Capa M, Chenuil A, Colangelo MA, De Clerck O, Gutiérrez JM, Lattanzi L, Leduc M, Martin D, Matterson KO, Mikac B, Plaisance L, Ponti M, Riesgo A, Rossi V, Turicchia E, Waeschenbach A, Wangensteen OS, Costantini F (2021) Are well-studied marine biodiversity hotspots still blackspots for animal barcoding? Glob Ecol Conserv 32:e01909. https://doi.org/10.1016/j.gecco.2021.e01909
- Multigner L, Kadhel P, Rouget F, Blanchet P, Cordier S (2016) Chlordecone exposure and adverse effects in French West Indies populations. Environ Sci Pollut Res 23:3–8
- Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563
- Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101
- Mumby PJ, Chollett I, Bozec Y-M, Wolff NH (2014) Ecological resilience, robustness and vulnerability: how do these concepts benefit ecosystem management? Curr Opin Environ Sustain 7:22–27
- Mundy CN (2000) An appraisal of methods used in coral recruitment studies. Coral Reefs 19:124–131
- Nagelkerken I, Goldenberg SU, Ferreira CM, Ullah H, Connell SD (2020) Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369:829–832
- Nakajima Y, Wepfer PH, Suzuki S, Zayasu Y, Shinzato C, Satoh N, Mitarai S (2017) Microsatellite markers for multiple Pocillopora genetic lineages offer new insights about coral populations. Sci Rep 7:6729
- Nash KL, Allen CR, Angeler DG, Barichievy C, Eason T, Garmestani AS, Graham NA, Granholm D, Knutson M, Nelson RJ (2014) Discontinuities, cross-scale patterns, and the organization of ecosystems. Ecology 95:654–667
- Nichols PK, Timmers M, Marko PB (2022) Hide 'n seq: direct versus indirect metabarcoding of coral reef cryptic communities. Environ DNA 4:93–107. https://doi.org/10.1002/edn3.203
- Nielsen ES, Henriques R, Beger M, Toonen RJ, Von der Heyden S (2020) Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 20:1–17

- Ninon J (2007) La dynamique urbaine à Mayotte: l'étalement de Mamoudzou et la «périphérisation» des centres petits-terriens. Arch Sci Soc Relig 240:305–318
- OECD (2020) A comprehensive overview of global biodiversity finance recherche Google. https://www.google.com/search?client=firefox-b-d&q=A+Comprehensive+Overview+of+Global+Biodiversity+Finance. Accessed 11 Oct 2023
- Osborne K, Dolman AM, Burgess SC, Johns KA (2011) Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS One 6:e17516
- Osborne K, Thompson AA, Cheal AJ, Emslie MJ, Johns KA, Jonker MJ, Logan M, Miller IR, Sweatman HP (2017) Delayed coral recovery in a warming ocean. Glob Change Biol 23:3869–3881
- Ouassine Y, Zahir J, Conruyt N, Kayal M, Martin PA, Chenin E, Bigot L, Vignes Lebbe R (2024) Automatic coral Morphotypes detection with YOLO: a deep learning approach for efficient and accurate coral reef monitoring. In: Mercier-Laurent E, Kayakutlu G, Owoc ML, Wahid A, Mason K (eds) Artificial intelligence for knowledge management, energy and sustainability. Springer Nature Switzerland, Cham, pp 177–188
- Ouédraogo D-Y, Delaunay M, Sordello R, Hédouin L, Castelin M, Perceval O, Domart-Coulon I, Burga K, Ferrier-Pagès C, Multon R (2021) Evidence on the impacts of chemicals arising from human activity on tropical reef-building corals; a systematic map. Environ Evid 10:1–18
- Ouédraogo D-Y, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MM, Castelin M, Calvayrac C (2023) What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. Environ Evid 12:1–38
- Ouréns R, Flores L, Fernández L, Freire J (2013) Habitat and densitydependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). J Sea Res 76:50–60
- Ouyang Z, Sciusco P, Jiao T, Feron S, Lei C, Li F, John R, Fan P, Li X, Williams CA (2022) Albedo changes caused by future urbanization contribute to global warming. Nat Commun 13:3800
- Pacey KI, Caballes CF, Pratchett MS (2023) Using size-weight relationships to estimate biomass of heavily targeted aquarium corals by Australia's coral harvest fisheries. Sci Rep 13:1448. https://doi.org/10.1038/s41598-023-28447-w
- Papastamatiou YP, Wetherbee BM, Lowe CG, Crow GL (2006)
 Distribution and diet of four species of carcharhinid shark in the
 Hawaiian Islands: evidence for resource partitioning and competitive exclusion. Mar Ecol Prog Ser 320:239–251
- Pauly D (1989) A simple index of metabolic level in fishes
- Pendleton LH (2010) The economic and market value of coasts and estuaries: what's at stake? Econ Mark Value Coasts Estuaries Whats Stake
- Penin L, Michonneau F, Baird AH, Connolly SR, Pratchett MS, Kayal M, Adjeroud M (2010) Early post-settlement mortality and the structure of coral assemblages. Mar Ecol Prog Ser 408:55–64
- Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RH, Scholes RJ, Bruford MW, Brummitt N, Butchart SH, Cardoso AC (2013) Essential biodiversity variables. Science 339:277–278
- Pérez-Rosales G, Brandl SJ, Chancerelle Y, Siu G, Martinez E, Parravicini V, Hédouin L (2021a) Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Mar Pollut Bull 170:112659
- Pérez-Rosales G, Rouzé H, Torda G, Bongaerts P, Pichon M, Consortium UTP, Parravicini V, Hédouin L (2021b) Mesophotic coral communities escape thermal coral bleaching in French Polynesia. R Soc Open Sci 8:210139
- Pérez-Rosales G, Pichon M, Rouzé H, Villéger S, Torda G, Bongaerts P, Carlot J, Consortium UTP, Parravicini V, Hédouin L (2022) Mesophotic coral ecosystems of French Polynesia are hotspots

- of alpha and beta generic diversity for scleractinian assemblages. Divers Distrib 28:1391–1403
- Petie R, Hall MR, Hyldahl M, Garm A (2016) Visual orientation by the crown-of-thorns starfish (Acanthaster planci). Coral Reefs 35:1139–1150. https://doi.org/10.1007/s00338-016-1478-0
- Philippe S, Schoenberger S, Ahmed N (2022) Radiation exposures and compensation of victims of French atmospheric nuclear tests in Polynesia. Sci Glob Secur 30:62–94
- Pimiento C, Leprieur F, Silvestro D, Lefcheck JS, Albouy C, Rasher DB, Davis M, Svenning J-C, Griffin JN (2020) Functional diversity of marine megafauna in the Anthropocene. Sci Adv 6:eaay7650
- Planes S, Allemand D (2023) Insights and achievements from the Tara Pacific expedition. Nat Commun 14:3131. https://doi.org/10.1038/ s41467-023-38896-6
- Pratchett MS (2001) Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Mar Ecol Prog Ser 214:111–119
- Pratchett MS (2005) Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern great barrier reef. Mar Biol 148:373–382
- Pratchett MS, Cumming GS (2019) Managing cross-scale dynamics in marine conservation: pest irruptions and lessons from culling of crown-of-thorns starfish (Acanthaster spp.). Biol Conserv 238:108211
- Pratchett M, Caballes C, Rivera-Posada J, Sweatman H (2014) Limits to understanding and managing outbreaks of crown-of-thorns star-fish (ACANTHASTER Spp.). Oceanogr Mar Biol 52:133–200. https://doi.org/10.1201/b17143-4
- Pratchett MS, Caballes CF, Wilmes JC, Matthews S, Mellin C, Sweatman HPA, Nadler LE, Brodie J, Thompson CA, Hoey J, Bos AR, Byrne M, Messmer V, Fortunato SAV, Chen CCM, Buck ACE, Babcock RC, Uthicke S (2017) Thirty years of research on crown-of-thorns starfish (1986–2016): scientific advances and emerging opportunities. Diversity 9:41. https://doi.org/10.3390/d9040041
- Pratchett MS, Caballes CF, Messmer V, Fletcher CS, Westcott DA (2020) Movement patterns of Pacific crown-of-thorns starfish (Acanthaster cf. solaris) linked to habitat structure and prey availability
- Puotinen M, Drost E, Lowe R, Depczynski M, Radford B, Heyward A, Gilmour J (2020) Towards modelling the future risk of cyclone wave damage to the world's coral reefs. Glob Change Biol 26:4302–4315
- Quaeck-Davies K, Bendall VA, MacKenzie KM, Hetherington S, Newton J, Trueman CN (2018) Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses. PeerJ 6:e4883
- Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan GA, Hellberg ME, Kitahara MV, Morrison CL, Paz-García DA (2020) Palaeoclimate Ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol 4:1531–1538
- R Core Team (2023) R: a language and environment for statistical computing
- Rahman MA, Amin SMN, Yusoff FM, Arshad A, Kuppan P, Nor Shamsudin M (2012) Length weight relationships and fecundity estimates of long-spined sea urchin, Diadema setosum, from the Pulau Pangkor, peninsular Malaysia. Aquat Ecosyst Health Manag 15:311–315
- Raitsos DE, Brewin RJ, Zhan P, Dreano D, Pradhan Y, Nanninga GB, Hoteit I (2017) Sensing coral reef connectivity pathways from space. Sci Rep 7:9338
- Ramírez-Portilla C, Bieger IM, Belleman RG, Wilke T, Flot J-F, Baird AH, Harii S, Sinniger F, Kaandorp JA (2022) Quantitative threedimensional morphological analysis supports species discrimination in complex-shaped and taxonomically challenging corals. Front Mar Sci 9
- Rapuano H, Shlesinger T, Roth L, Bronstein O, Loya Y (2023) Coming of age: annual onset of coral reproduction is determined by age rather than size. Iscience 26:106533

- Reverter M, Helber SB, Rohde S, De Goeij JM, Schupp PJ (2022) Coral reef benthic community changes in the Anthropocene: biogeographic heterogeneity, overlooked configurations, and methodology. Glob Change Biol 28:1956–1971. https://doi.org/10.1111/ gcb.16034
- Richards ZT, Juszkiewicz DJ, Hoggett A (2021) Spatio-temporal persistence of scleractinian coral species at Lizard Island, Great Barrier Reef. Coral Reefs 40:1369–1378
- Richardson LE, Graham NA, Hoey AS (2017a) Cross-scale habitat structure driven by coral species composition on tropical reefs. Sci Rep 7:7557
- Richardson LE, Graham NA, Pratchett MS, Hoey AS (2017b) Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fish 100:193–207
- Riegl B, Johnston M, Purkis S, Howells E, Burt J, Steiner SCC, Sheppard CRC, Bauman A (2018) Population collapse dynamics in Acropora downingi, an Arabian/Persian gulf ecosystemengineering coral, linked to rising temperature. Glob Change Biol 24:2447–2462. https://doi.org/10.1111/gcb.14114
- Riley M, Meagher P, Huveneers C, Leto J, Peddemors VM, Slip D, West J, Bradshaw CJA (2022) The Australian Shark-Incident Database for quantifying temporal and spatial patterns of shark-human conflict. Sci Data 9:378. https://doi.org/10.1038/s41597-022-01453-9
- Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, Marangon E, Botté ES, Laffy P, Thomas T, Webster NS (2021) A genomic view of the microbiome of coral reef demosponges. ISME J 15:1641–1654. https://doi.org/10.1038/s41396-020-00876-9
- Robinson JP, McDevitt-Irwin JM, Dajka J-C, Hadj-Hammou J, Howlett S, Graba-Landry A, Hoey AS, Nash KL, Wilson SK, Graham NA (2020) Habitat and fishing control grazing potential on coral reefs. Funct Ecol 34:240–251
- Rogers A, Harborne AR, Brown CJ, Bozec Y-M, Castro C, Chollett I, Hock K, Knowland CA, Marshell A, Ortiz JC, Razak T, Roff G, Samper-Villarreal J, Saunders MI, Wolff NH, Mumby PJ (2015) Anticipative management for coral reef ecosystem services in the 21st century. Glob Change Biol 21:504–514. https://doi. org/10.1111/gcb.12725
- Romero-Torres M, Treml EA, Acosta A, Paz-García DA (2018) The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier. Sci Rep 8:9354. https://doi. org/10.1038/s41598-018-27644-2
- Rongo T, Bush M, Van Woesik R (2009) Did ciguatera prompt the late Holocene Polynesian voyages of discovery? J Biogeogr 36:1423–1432
- Rossi S, Schubert N, Brown D, Soares M de O, Grosso V, Rangel-Huerta E, Maldonado E (2018) Linking host morphology and symbiont performance in octocorals. Sci Rep 8:12823
- Rypel AL, Haag WR, Findlay RH (2008) Validation of annual growth rings in freshwater mussel shells using cross dating. Can J Fish Aquat Sci 65:2224–2232
- Sahal A, Morin J, Schindelé F, Lavigne F (2011) A catalog of tsunamis in La Réunion Island from august 27th 1883 to october 26th 2010. Sci Tsunami Hazards 30
- Schmitt RJ, Holbrook SJ, Brooks AJ, Lape JC (2009) Intraguild predation in a structured habitat: distinguishing multiple-predator effects from competitor effects. Ecology 90:2434–2443
- Schmitt RJ, Holbrook SJ, Davis SL, Brooks AJ, Adam TC (2019) Experimental support for alternative attractors on coral reefs. Proc Natl Acad Sci 116:4372–4381
- Séguigne C, Bègue M, Meyer C, Mourier J, Clua É (2023) Provisioning ecotourism does not increase tiger shark site fidelity. Sci Rep 13:7785. https://doi.org/10.1038/s41598-023-34446-8
- Selmoni O, Rochat E, Lecellier G, Berteaux-Lecellier V, Joost S (2020) Seascape genomics as a new tool to empower coral reef conservation strategies: an example on North-Western Pacific Acropora

- digitifera. Evol Appl 13:1923–1938. https://doi.org/10.1111/eva.12944
- Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385. https://doi.org/10.1086/BBLv216n3p373
- Shinzato C, Narisoko H, Nishitsuji K, Nagata T, Satoh N, Inoue J (2021) Novel mitochondrial DNA markers for Scleractinian corals and generic-level environmental DNA Metabarcoding. Front Mar Sci 8
- Siqueira AC, Bellwood DR, Cowman PF (2019) The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc R Soc B 286:20182672
- Smallegange IM, Caswell H, Toorians ME, de Roos AM (2017) Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models. Methods Ecol Evol 8:146–154
- Smith S (1978) Coral-reef area and the contributions of reefs to processes and resources of the world's oceans. Nature 273:225–226
- Souter D, Planes S, Wicquart J, Logan M, Obura D, Staub F (2021) Status of coral reefs of the world: 2020
- Spalding M, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press
- Speers AE, Besedin EY, Palardy JE, Moore C (2016) Impacts of climate change and ocean acidification on coral reef fisheries: an integrated ecological–economic model. Ecol Econ 128:33–43
- Stiger-Pouvreau V, Zubia M (2020) Macroalgal diversity for sustainable biotechnological development in French tropical overseas territories. Bot Mar 63:17–41. https://doi.org/10.1515/bot-2019-0032
- Sully S, Burkepile DE, Donovan MK, Hodgson G, Van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nat Commun 10:1264
- Swain TD, Lax S, Gilbert J, Backman V, Marcelino LA (2021) A phylogeny-informed analysis of the global coral-Symbiodiniaceae interaction network reveals that traits correlated with thermal bleaching are specific to symbiont transmission mode. mSystems 6. https://doi.org/10.1128/msystems.00266-21
- Sweatman H (2008) No-take reserves protect coral reefs from predatory starfish. Curr Biol 18:R598–R599
- Taglioni F, Guiltat S, Teurlai M, Delsaut M, Payet D (2019) A spatial and environmental analysis of shark attacks on Reunion Island (1980–2017). Mar Policy 101:51–62. https://doi.org/10.1016/j.marpol.2018.12.010
- Tea Y-K, Xu X, DiBattista JD, Lo N, Cowman PF, Ho SY (2022) Phylogenomic analysis of concatenated ultraconserved elements reveals the recent evolutionary radiation of the fairy wrasses (Teleostei: Labridae: Cirrhilabrus). Syst Biol 71:1–12
- Tekwa EW, Catalano KA, Bazzicalupo AL, O'Connor MI, Pinsky ML (2023) The sizes of life. PLoS One 18:e0283020. https://doi.org/10.1371/journal.pone.0283020
- Thiault L, Gelcich S, Marshall N, Marshall P, Chlous F, Claudet J (2020a) Operationalizing vulnerability for social–ecological integration in conservation and natural resource management. Conserv Lett 13:e12677. https://doi.org/10.1111/conl.12677
- Thiault L, Weekers D, Curnock M, Marshall N, Pert PL, Beeden R, Dyer M, Claudet J (2020b) Predicting poaching risk in marine protected areas for improved patrol efficiency. J Environ Manag 254:109808
- Thirukanthan CS, Azra MN, Lananan F, Sara' G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J (2023) The evolution of coral reef under changing climate: a Scientometric review. Animals 13:949
- Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol Evol 28:423–431
- Udyawer V, Goiran C, Shine R (2021) Peaceful coexistence between people and deadly wildlife: why are recreational users of the ocean so rarely bitten by sea snakes? People Nat 3:335–346

- Urban ER Jr, Ittekkot V (2022) Blue economy: an ocean science perspective. Springer Nature
- Urbina-Barreto I, Chiroleu F, Pinel R, Fréchon L, Mahamadaly V, Elise S, Kulbicki M, Quod J-P, Dutrieux E, Garnier R (2021) Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: from colonies to reefscapes. Ecol Indic 121:107151
- Vajed Samiei J, Saleh A, Mehdinia A, Shirvani A, Kayal M (2015) Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations. PeerJ 3:e1062
- Van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R (2022) Coral-bleaching responses to climate change across biological scales. Glob Change Biol 28:4229–4250
- Vanhatalo J, Hosack GR, Sweatman H (2017) Spatiotemporal modelling of crown-of-thorns starfish outbreaks on the Great Barrier Reef to inform control strategies. J Appl Ecol 54:188–197. https://doi.org/10.1111/1365-2664.12710
- Vercelloni J, Kayal M, Chancerelle Y, Planes S (2019) Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Sci Rep 9:1027. https://doi.org/10.1038/s41598-018-38228-5
- Veron JEN (2000) Corals of the World
- Walker JA, Alfaro ME, Noble MM, Fulton CJ (2013) Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes. PLoS One 8:e75422
- Wegley Kelly L, Nelson CE, Petras D, Koester I, Quinlan ZA, Arts MGI, Nothias L-F, Comstock J, White BM, Hopmans EC, van Duyl FC, Carlson CA, Aluwihare LI, Dorrestein PC, Haas AF (2022) Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc Natl Acad Sci 119:e2110283119. https://doi.org/10.1073/pnas.2110283119
- West TO, Marland G, Singh N, Bhaduri BL, Roddy AB (2009) The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States. Biogeochemistry 94:29–41
- West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, Richards ZT, Travers MJ, Newman SJ, Bunce M (2020) eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical Island ecosystem. Mol Ecol 29:1069–1086. https:// doi.org/10.1111/mec.15382

- Westcott DA, Fletcher CS, Kroon FJ, Babcock RC, Plagányi EE, Pratchett MS, Bonin MC (2020) Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish outbreaks on Australia's Great Barrier Reef. Sci Rep 10:12594
- Wiedenmann J, D'Angelo C, Mardones ML, Moore S, Benkwitt CE, Graham NA, Hambach B, Wilson PA, Vanstone J, Eyal G (2023) Reef-building corals farm and feed on their photosynthetic symbionts. Nature 1–7
- Williams GJ, Graham NA, Jouffray J-B, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM (2019) Coral reef ecology in the Anthropocene. Funct Ecol 33:1014–1022
- Wilmes JC, Hoey AS, Pratchett MS (2020) Contrasting size and fate of juvenile crown-of-thorns starfish linked to ontogenetic diet shifts. Proc R Soc B 287:20201052
- Winters G, Beer S, Willette DA, Viana IG, Chiquillo KL, Beca-Carretero P, Villamayor B, Azcárate-García T, Shem-Tov R, Mwabvu B (2020) The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front Mar Sci 7:300
- Wolfe K, Desbiens A, Stella J, Mumby PJ (2020) Length-weight relationships to quantify biomass for motile coral reef cryptofauna. Coral Reefs 39:1649–1660
- Wolfe K, Kenyon TM, Desbiens A, de la Motte K, Mumby PJ (2023) Hierarchical drivers of cryptic biodiversity on coral reefs. Ecol Monogr e1586
- Wolff NH, Wong A, Vitolo R, Stolberg K, Anthony KRN, Mumby PJ (2016) Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance. Coral Reefs 35:613–623. https:// doi.org/10.1007/s00338-016-1400-9
- Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA (2019) Coral reef ecosystem services in the Anthropocene. Funct Ecol 33:1023–1034
- Wooldridge SA, Brodie JE (2015) Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia. Mar Pollut Bull 101:805–815
- Yuan T, Song H, Wood R, Wang C, Oreopoulos L, Platnick SE, von Hippel S, Meyer K, Light S, Wilcox E (2022) Global reduction in ship-tracks from sulfur regulations for shipping fuel. Sci Adv 8:eabn7988
- Zhang T, Chen T, Liu S, Lin X, Li S, Yan W (2023) Coral reef resilience persisted for a millennium but has declined rapidly in recent decades. Front Mar Sci 10:1143728