Trophodynamics in Coral Reefs: Current Knowledge and Research Perspectives

Marine J. Briand , Charlotte R. Dromard , Mireille Harmelin-Vivien , Valeriano Parravicini , and Yves Letourneur .

Abstract

Coral reef trophodynamics is extremely complex and still poorly understood, while investigated for decades. Recent advances on organic matter sources, fluxes, trophic niches of species, and spatiotemporal variations of food webs are first summarized. Then, tools used in trophodynamics research are briefly documented, from traditional pioneer methods of stomach content analysis to more recent biochemical methods (stable isotopes, fatty acids, biochemical composition, metabolomics, DNA metabarcoding, etc.) and modeling approaches. Eventually, future challenges and perspectives are presented addressing the diverse scenarios of coral reef trophic functioning response in front of the ongoing changes in global and local stressors.

Keywords

 $\label{eq:continuous_problem} Trophic \ relationships \cdot Biochemical \ tracers \cdot Stable \\ isotopes \cdot DNA \ metabarcoding \cdot Modeling$

M. J. Briand · V. Parravicini

CRIOBE, PSL Research University, USR 3278, EPHE-CNRS-UPVD, LabEx « Corail », Université de Perpignan, Avenue Paul Alduy, Perpignan Cedex, France

e-mail: valeriano.parravicini@ephe.psl.eu

C. R. Dromard

UMR 8067 BOREA, Univ Antilles, MNHN, SU, UCN, CNRS, IRD, Pointe-à-Pitre, Guadeloupe, France

e-mail: Charlotte.Dromard@univ-antilles.fr

M. Harmelin-Vivien

Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM 110, Campus Luminy, Marseille, France

e-mail: mireille.harmelin@mio.osupytheas.fr

Y. Letourneur (⊠)

UMR 250 ENTROPIE, EMR 9001 SantEco, UR, IRD, CNRS, IFREMER, UNC, LabEx « Corail », Université de La Nouvelle-Calédonie, Nouméa Cedex, New Caledonia

e-mail: yves.letourneur@unc.nc

1.1 Context of Trophic Ecology in Coral Reefs

Coral reefs are characterized by poorly resolved innumerable and nonrandom linkages across an intricate network of ecological interactions (Jordano 2016). Accounting for such complexity is critical to define energetic pathways and, ultimately, ecosystem functioning, productivity, and mechanisms behind the maintenance of biodiversity (Tilman et al. 2014). Indeed, a food web perspective may emerge as the most appropriate for verifying and assessing the integrated effects of multiple pressures on natural ecosystems, as internal food web mechanisms can buffer or even reverse the effects exerted at the population or species scale (Gray et al. 2014). Many aspects of the trophodynamic processes have already been investigated in coral reefs over the last decennies and are summarized below (Fig. 1.1).

1.1.1 Main Questionings in the Trophic Studies

1.1.1.1 Major Organic Matter Resources and Fluxes

Understanding the mechanisms that maintain ecosystem productivity requires a definition of the major sources of nutrients and energy that fuel the entire coral reef ecosystem (Letourneur et al. 2013; Robinson et al. 2024). The characterization of these energy flows is still complicated due to a high diversity of organic matter (OM) sources available to primary consumers in these systems. Coral reef food webs rely both on an allochthonous oceanic production supported by phytoplankton and on autochthonous benthic primary producers, that is, coral symbionts, macroalgae, algal turf, microphytobenthos, crustose coralline algae, and seagrasses (Dromard et al. 2013; Briand et al. 2015, 2016; Fey et al. 2020). Moreover, both benthic and pelagic potential food sources, plus the inputs from the terrestrial realm, may be important indirect contributors to the OM pools, that is,

1

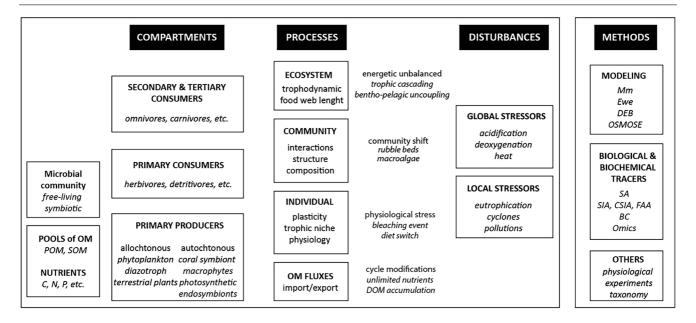


Fig. 1.1 Summary scheme of the main compartments, processes, disturbances, and methods (abbreviations in the text) involved in trophodynamics research for the last decades and in the future

detritus, particulate, and sedimentary OM (Crossman et al. 2001; Wyatt et al. 2013).

The rapid recycling of OM is a characteristic of coral reef functioning, sustaining high productivity in relatively oligotrophic environments. The roles of different organisms and pathways having a key influence on nutrient biogeochemistry and fluxes were thus pointed out. For example, sponges are both filter feeders and hosts to abundant symbiont communities, and have a major role in the transfer of dissolved organic matter (DOM) to higher trophic levels in the benthos, for example, sponge-associated and free-living detritivores (Rix et al. 2017). Several species recycle carbon by directly assimilating dissolved organic carbon (DOC) into biomass (McMurray et al. 2016) or converting DOC exudates released by corals and algae into bioavailable particulate organic carbon (POC) and cellular detritus through the sponge loop pathway (De Goeij et al. 2013). In addition, sponges are important sink and/or sources of dissolved inorganic nitrogen, phosphate, and silicate through their metabolism and the inextricable activity of their associated microbial communities (Pawlik and McMurray 2020). Indeed, microorganisms also efficiently recycle the dissolved organic matter (DOM) released by sponges and other primary producers through the microbial loop (Haas et al. 2013; Silveira et al. 2017). Recent studies even highlighted the significant impact of DOM components like metabolites (e.g., tryptophan, phenylalanine, caffeine) produced by sponges on the success of microbial communities and organisms associated with microbial symbionts (Fiore et al. 2017). Finally, planktonic diazotrophs fix and reduce atmospheric N2 and release part of this nitrogen into bioavailable ammonium (NH₄+) in seawater. Abundant in coral lagoon waters, these prokaryotes are providing sufficient nitrogen stocks for the development of the planktonic food web in oligotrophic waters (Bonnet et al. 2016).

By consuming these sources, primary consumers are initiating tranfers of OM into the food webs. Their food preferences are therefore decisive and can be explained by several factors; for instance, mature forms of macroalgae are more or less consumed by herbivores according to their palatability, that being a function of the algal morphology (e.g., soft or calcareous), physiological strategies (e.g., synthesis of repellent molecules), and nutritional quality (Dromard et al. 2017 and included references). All other trophic network interactions also lead to important fluxes of energy, and many studies reinforce the evidence of a tight bentho-pelagic coupling that might become an increasingly important characteristic in future coral reefs (Fey et al. 2020; Skinner et al. 2021).

1.1.1.2 Trophic Niche and Plasticity of Species

It remains difficult to clearly capture dynamic energetic processes on coral reefs (Harmelin-Vivien 2002; Briand et al. 2016), and understanding species' roles and interactions requires an accurate assessment of their trophic status and niche. Thus, the trophic position is an important concept typically used to calculate food chain length, degree of omnivory or compound bioaccumulation into food webs (Post 2002). The trophic niche, issued from the ecological niche theory applied to feeding processes, is also largely employed; its size and specialization result from complex interactions between biological traits and local constraints,

generating difficulties to disentangle the respective effects of each characteristic (Futuyma and Moreno 1988). This balance between different traits and characteristics may lead to different responses and thus influence feeding plasticity in response to changes of resource availability (Letourneur et al. 2017). Therefore, it is critical and urgent to better assess how and through what mechanisms species or functional groups can adapt and cope with changing environmental conditions.

Identifying interspecific diet and niches specializations is critical (Cybulski et al. 2022 and included references). For instance, the diverse range of feeding behaviors and adaptive morphologies employed by invertivores on coral reefs is a clear indication of the widely underestimated role of cryptofauna in the reef trophodynamics (Glynn et al. 2011). However, it has been challenging to delineate such complex behaviors and interactions, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinions (Parravicini et al. 2020). Dietary variation of individuals within species is also widespread (Wyatt et al. 2019), so characterizing intraspecializations within a larger population is essential for delineating a species' trophic niche. Besides, reef organisms may change their resource use with ontogeny (Cummings et al. 2010), and alter their resource use according to what is available by plasticity process (Fey et al. 2021a).

1.1.1.3 Spatial and Temporal Variations of Food Webs

Due to changes in environmental conditions and in the structure of benthic and pelagic primary producers, OM resources fluctuate within and between reefs (Johnson et al. 1995). In one hand, variations along spatial scales have shown influence of numerous environmental factors, such as the distance from the coast and the terrestrial or oceanic exposure, or the connectivity between adjacent habitats (Briand et al. 2015). On the other hand, short- as long-term temporal changes have been less investigated, and, for example, few data were recorded about the effects of nycthemeral variations on reef communities (de Lira et al. 2014). As a result, relevancy of isotopic spatiotemporal comparisons is limited unless isotopic baselines are standardized between sampling periods or locations (Tamelander et al. 2009), and therefore understanding such variations associated with trophic structure is often complicated.

1.1.2 Tools Used in Trophodynamic Research

1.1.2.1 Traditional Methods

From the 1950s, in parallel to direct observation of foraging, stomach analysis (SA) is one of the first and the most applied methods for qualitative and quantitative evaluation of con-

sumers' diet (Hyslop 1980). It concerns the analysis of food items in all portions of the digestive tract (mostly the stomach), through (1) a sampling step using nonlethal (i.e., regurgitation) or, most often, lethal methods (i.e., extraction of the digestive tract), and (2) an identification step requiring visual and/or DNA-based techniques (Da Silveira et al. 2020 and included references). SA provides punctual information on ingested food (not assimilated one), at individual to community levels, revealing intra- and interspecific relationships strong enough to schemed coherent trophic functioning (Harmelin-Vivien 1981). However, SA also goes with high sampling costs and laborious laboratory work, which is reliant on potential degradation and/or fragmentation of samples, implying a possible nonidentification of the food item, and does not allow the determination of the origins of consumed inorganic matter.

1.1.2.2 Biochemical Tracers

From the 1980s, biochemical tracers were used to reveal detailed and integrated diet information, with accuracy and high resolution (Nielsen et al. 2018). The synthesis of body tissues is related to the chemical elements present in consumed foods, so both should be isotopically related. Stable isotope analysis (SIA) of carbon (δ^{13} C), nitrogen (δ^{15} N), and sulfur $(\delta^{34}S)$ has then emerged as a powerful method for revealing "time-integrated assimilated food" information and for giving insight into their trophic ecology. Specifically, there is a historically accepted change in bulk isotopic ratio values at each trophic level (i.e., $\sim 1\%$ for δ^{13} C and $\sim 3\%$ for δ15N; Post 2002, McCutchan Jr et al. 2003), widely used to estimate the basal sources of carbon and nitrogen in a particular food chain, prey composition, and trophic position (Michener and Kaufman 2007). Such assumptions may have led to biased results in the past, as since values of trophic fractionation factors have been largely reevaluated (Letourneur et al. 2024); they are generally higher between primary producers and herbivores than between consumers of medium to high levels, and vary substantially among species (Wyatt et al. 2010). Thanks to improvements in analytical techniques, plus given the much larger range of variation in resource sulfur signatures and the low consumer-diet shift (McCutchan Jr et al. 2003), the δ^{34} S ratio is increasingly being used as a third tracer to disentangle sources and trophic level identification in food webs (Skinner et al. 2022). Despite many assets, the SIA tool needs to rely on isotopically distinct food sources for accurate interpretations, a condition that is often not observed in the field (Da Silveira et al. 2020).

After that, a refinement of the SIA method called compound-specific isotope analysis (CSIA) has been successfully applied in trophic research. While SIA evaluates the "bulk" isotopic concentration of a given biological sample, CSIA evaluates isotopic signatures of specific individual

macronutrients such as amino acids and lipids (e.g., $\delta^{15}N$ of glutamic acid or phenylalanine, $\delta^{13}C$ of fatty acids; Twining et al. 2020). The conservative and predictable assimilation patterns obtained in consumers allow for a more accurate identification of the food source (McMahon et al. 2016), and provide specific information on both the assimilated baseline and the length of food chains (Fey et al. 2021a).

Fatty acids analysis (FAA) is also a conservative method providing integrated qualitative information regarding the diet of consumers in short- and long-term approaches (Iverson et al. 2004; Iverson 2009). FAs are carbon-rich compounds that are ubiquitous and greatly diversified in most organisms (25-70 unique molecules). Although some are biosynthesized de novo by specific organisms at the base of the food chain (e.g., bacteria, diatoms, macroalgae, vascular plants), most FAs are acquired through diet and are poorly metabolized by the consumers (Dalsgaard et al. 2003). Owing to their predictable assimilation patterns and their multivariate profiles, these lipid biomarkers are useful tool to distinguish potential dietary items at a low identification level (Iverson et al. 2004). Data on the presence, amount, and ratios of different FAs can also be used to infer food consumption and energetic mobilizations along the consumers' life cycles (Dalsgaard et al. 2003; Fey et al. 2021a). As CSIA, the FAA is an expensive and time-consuming method, and profiles can change dramatically due to environmental conditions (e.g., temperature, light, nutrients; Da Silveira et al. 2020).

At last, the analysis of the biochemical composition (BC) of the OM as the sum of lipids, proteins, and soluble carbohydrates concentrations has been used to provide information on the energetic value of food material potentially available to consumers (Krogdahl et al. 2005).

The rise of omics approaches in recent years provides molecular-level insights into food relationships and biogeochemical cycling. High-resolution *metabolomics* techniques were used to probe the composition of OM (e.g., DOM) including metabolites relevant to the growth of many organisms (Fiore et al. 2017; Wegley Kelly et al. 2022). Untargeted or discovery-based analysis allows for a semiquantitative profile-view of low-molecular-weight molecules within a sample, while the targeted analysis provides a quantitative comparison of a small subset of metabolites (Patti et al. 2012; Kido Soule et al. 2015). DNA metabarcoding (DNAm) methods can capture individual-level dietary variations, improving trophodynamic assessments, but they are limited to the gut contents of the animal at the time of sampling (Casey et al. 2019).

Each method has its own objectives, sampling and analysis procedures, data resolution, spatial and temporal coverage, results interpretation, and limitations. The combination of these approaches, including stomach content analysis, surpasses most of these limitations and is therefore greatly

recommended (Da Silveira et al. 2020; Robinson et al. 2024). A joint perspective that can be applied to different ecological levels (population, community, and ecosystem), providing valuable diet information on intra- (e.g., ontogenetic, reproductive, migration) and interspecific relationships, clarifying the origin of food resources explored, spatial-temporal patterns, and trophic-web structuration (Matley et al. 2018).

1.1.2.3 Modeling Approaches

Biochemical methods are not able to estimate the amounts of consumed foods without modeling (Iverson et al. 2004). Consequently, in the last 20 years, several analytical methods called "Bayesian models" have been proposed to convert stable isotope data into robust derived metrics. Mixing models (MM) allow (i) the estimation of the relative contribution of isotopically different OM sources in a mixture and the reconstruction of animal diets from isotopic ratios and/or multiple chemical tracers (e.g., "SIAR", then "SIMMR" and "MIXSIAR" models in R; Stock et al. 2018), (ii) the calculation of consumer trophic position at the population level ("tRophicPosition" in R; Quezada-Romegialli et al. 2018), (iii) the measurements of the isotopic niche space of populations and communities ["SIBER" model in R; Jackson et al. 2011, or also MCPs (minimum convex polygon); Fey et al. 2021b], and (iv) the evaluation of entire food webs ("IsoWeb" model; Kayoda et al. 2012). Needless to say, that outputs must be carefully interpreted, in the light of strengths and weaknesses of each model, and that current stomach-content analysis and in situ direct observations should guide model inputs (Twining et al. 2020).

Trophic ecology also provides basic information for structuring complex ecotrophic models. ECOPATH has been developed to estimate mean annual biomass, production, and consumption for components of an ecosystem (Polovina 1984). The software and techniques have been improved to include methods of comparing ecosystems using Ecological Network Analysis (Christensen and Pauly 1992), to model dynamic changes using ECOSIM (Walters et al. 1997), to model spatial changes using ECOSPACE (Walters et al. 1999), and to model dynamics using the spatial-temporal framework and the habitat foraging capacity model (Christensen et al. 2014). Is born out a combined *Ecopath* with Ecosim (EwE) software package, widely applied for modeling marine ecosystems and able to address many of the questions asked by managers on marine policy issues (Christensen and Walters 2004). For example, ECOTRACER included in EwE simulate and analyze the transport of contaminants through coral reefs (e.g., methylmercury or radiocesium, Walters and Christensen 2018). However, still to date, easy access with limited quality control contributes to the low utilization of EwE models for management applications.

Other models less used in coral environment are nevertheless of interest. Models of energetics called dynamic energy budget or "DEB" claims to provide a comprehensive description of the metabolic organization and rates underlying the physiological functions of an organism throughout its life cycle in a fluctuating environment (Kooijman 2010). The predator-prey model *OSMOSE* is a two-dimensional, individual-based, and multispecies model explicitly representing major processes in the life cycle of high trophic level (HTL) groups of fish and invertebrate species (Grüss et al. 2015). Such models have already been useful to predict the effects of global change, and better understand trophic dynamics, environmental stressors effects, species geographical patterns, bio-production optimization, or management of exploited resources (Lesser 2013).

1.2 Future Challenges and Prospectives

Pristine areas are no more (Pandolfi et al. 2003), and even under best-case emissions trajectories, coral reefs will likely continue to be transformed by the global anthropogenic climate change (Hoey et al. 2016) and face escalating local human threats which cause severe destruction (i.e., coastal development, overfishing, pollution, and eutrophication; Zaneveld et al. 2016). Due to the complexity of coral reef ecology plus local and regional differences, understanding and identifying effective research and management practices to address corals' present and future fate is therefore challenging (Wilkins et al. 2021). In particular, among the coral regions studied by the French research community, the Caribbean and the French Polynesia should be prioritized for inclusion in international conservation programs (Guan et al. 2020). Therefore, multiple scientific challenges, economic progress, as well as a surge in technological innovations will be of importance for the future of coral reefs. We have chosen to focus on several critical scenarios here, for which trophic research might provide answers and solutions (Fig. 1.1).

1.2.1 Scientific Key Lever for Future Researches

1.2.1.1 Changes in OM Fluxes

The pool of nutrients can be altered by several drivers of natural and anthropogenic origin (D'Angelo and Wiedenmann 2014), and changes in OM fluxes are a crucial problematic, not only to assess food web functioning and the resilience of coral reefs, but also to anticipate unexpected cascading effects and undesirable ecological surprises. In the context of climate change, marine heat waves are becoming more intense and frequent (Hughes et al. 2018), and water acidification is increasing energy requirements of calcifying organ-

isms, in particular scleractinian corals. As well, anthropogenic nutrient enrichment in reef waters, mostly of nitrogen and phosphorus compounds, induces direct and indirect negative effects on coral physiological performances and ecosystem functioning (D'Angelo and Wiedenmann 2014). Because of the combined effect of heat, CO₂, and nutrient stress, coral reefs are experiencing increasingly frequent and devastating bleaching events (Hughes et al. 2017).

The global warming disrupts the key symbiosis interaction between corals and their endosymbiotic dinoflagellates and therefore decreases coral nitrogen acquisition capacity (Godinot et al. 2011). Thus, the ability of coral reefs to cope with future ocean conditions will depend on their capacity to fulfil their metabolic requirements (Meunier et al. 2021). More physiological studies on coral nutrition are therefore crucial to understand the feeding strategies of these polytrophic and opportunistic feeders faced with future life conditions, that is, via capture of plankton and organic particles by polyps and/or via translocation of photosynthetic products from their endosymbiotic algae (Duprey et al. 2016). An interesting track to resist and recover from stressing episodes is the store of energy reserves and/or the switch from an autotrophic to a heterotrophic diet. Selective feeding on picoplankton-sized unicellular cyanobacteria (Synechococcus spp.) and prochlorophytes (Prochlorococcus sp.) is a significant rich food N-input, and benefit from increasing feeding rates on zooplankton has been less studied (Meunier et al. 2021). Besides, both the activity and geographical distribution of diazotrophs, for example, *Trischodesmium* spp., will likely increase with future rising sea surface temperature (Ani et al. 2023). They could be an increasingly external alternative nutrient source for bleached corals (Meunier et al. 2019), reducing calcification sensitivity to heat stress and high pCO₂ conditions by a surplus of bioavailable N (Meunier et al. 2022). Such increasing atmospheric N₂ inputs into planktonic trophic webs may have positive consequences on the functioning of coral reefs. Thus, reef systems characterized by high planktonic diazotroph dynamic fluctuations in terms of abundance, community composition, and activity could be more resistant to climate change, as already observed in different regions, i.e. New Caledonia, Papua New Guinea, the Australian Great Barrier Reef, Hawaii, the Caribbean Sea, and the Red Sea (Luo et al. 2012; Bonnet et al. 2017). With corals decline, OM fluxes could also be disturbed by other organisms implicated into nutrient cycles. For instance, certain sponges may increase in abundance and in some cases, become functionally dominant on coral reefs (Bell et al. 2018). However, sponges are also negatively affected under future climate change scenarios with impacts on their symbionts and higher mortality rates (Fan et al. 2013). A thermal stress coupled with extreme acidification and deoxygenation may cause metabolic shifts and disturb nutrient cycling, by inducing a reduction or a break in the loop pathway and therefore in the particulate and detritus production, and by reducing photosynthetic functioning of associated photosymbionts (Maggioni et al. 2023).

Ongoing climate changes may also have an important effect by modifying the exchanges of OM at the interface between ocean and land (Liénart et al. 2018). For instance, higher rainfalls due to more recurrent and intense cyclonic events (Kossin 2018) might generate an increase of terrigenous river runoffs and sediment resuspension (Devlin et al. 2001). Even considerably distant from reefs, increase in dissolved nutrient level might have secondary direct combined effects that need to be furthered. Indeed, in conditions of sporadic events, nutrients are rapidly used by primary producers to fuel planktonic and benthic food webs (Delesalle et al. 1993). But in case of too recurrent events and nutrient excess, induced phytoplankton blooms and subsequent postbloom changes produce increases of decomposing OM, bacterial load, and altered oxygen levels (D'Angelo and Wiedenmann 2014), which could ripple through the entire food web. The escalating risk of common mechanisms resulting from such an unbalanced ecosystem and subsequent consequences is then likely the overgrowth by successive, conspicuous blooms of benthic macroalgae (Harmelin-Vivien 1994), the prevalence and severity of coral diseases (Voss and Richardson 2006), but also the outbreaks of coral eaters and bioeroders. Top-down control processes can reduce the impact of negative indirect effects of elevated nutrient levels for example, but involve abundant and diversified assemblages of reef consumers, as grazers of benthic algae, detritivores, or predators of corallivores (Hoey and Bellwood 2009).

In other words, several scientific levers are still largely unknown under future scenarios and are of high priority for next trophic investigations. Among them, consequences of quantitative and qualitative changes of the planktonic communities on the entire reef system, impacts of modifications in organism physiology and community ecology on the quality and quantity of OM fluxes within reefs, results on the pelagic-benthic coupling or food web dynamics across both fine and broad spatial and temporal scales. Besides, trophic ecology might help in knowledge-based optimization of management of multiple combined stress that becomes crucial for coral reef conservation (Brodie et al. 2012). As eutrophication driven by nitrogen (and other nutrients) is a major management challenge in many coastal settings (Bonsdorff 2021), quantifying the nitrogen contributed by diazotroph such as *Trichodesmium* spp. is a fundamental knowledge gap to fulfill. A supply of planktonic diazotrophs on the reefs could be included among innovative management approaches to improve the resilience of coral reefs with high conservation potential, during and after bleaching episodes (Hoey et al. 2016). Management strategies should aim for sustaining top-down control processes as well as reducing the nutrient influx in seawater, and future assessment will also strongly involve the optimal utilization of water quality bioindicators (Fabricius et al. 2012).

1.2.1.2 Becoming of Reef Communities

Trophic interactions underpin many of the processes that drive coral reef community structure and the key ecological services these ecosystems provide (Brandl et al. 2019). Many marine food webs are shaped by a small number of strong species interactions that have large effects on a community, that is, involving keystone and foundation species, plus species nested among many weaker interactions (Paine 1992). Consequently, trophic cascades tend to be particularly strong in marine systems (Shurin et al. 2002). When these impactful species interactions are altered by environmental conditions, they may act as ecological leverage points in the community that can magnify the effects of environmental change, for example, shifts in competitive dominance, intensification of predation/herbivory, increases in the frequency and severity of disease/parasite outbreaks, and disruption of facilitation/mutualism (Kroeker and Sanford 2022). Thus, ongoing fluctuations in ocean temperature, dissolved oxygen, and pH can impact community members differently, leading to shifts in the strength and outcome of species interactions and community dynamics. Indeed, environmental changes are translated into community changes via multiple organismal physiologies, that is, different physiological optima and environmental tolerances of species (Somero et al. 2017). In order to improve our ability to predict the emergent effects of ocean change, and allow marine scientists and managers to anticipate which ecosystems are especially vulnerable, trophic ecology can help a further exploration of leverage points in marine communities by way of a continued integration of physiology and ecology (Kroeker and Sanford 2022).

To cope with increased energetic demands imposed by ocean warming, deoxygenation, and ocean acidification, heterotrophs may, for instance, reallocate energy and/or increase rates of consumption; both responses can have substantial consequences for species interactions, including altering growth rates and competitive outcomes, and changing the intensity of herbivory or predation (Kroeker and Sanford 2022). Future research should therefore explore the presence of potential sublethal effects of habitat degradation on higher-order consumers, such as lower nutritional condition (Hempson et al. 2018). A given resource-consumer interaction might also vary with environmental changes (Gaylord et al. 2019). Thus, understanding how a species' dietary niche width relates to its functional role within an ecosystem is critical, given that increasing complexity of species interactions may serve to mitigate the effect of biodiversity loss on ecosystem function in future scenarios (Bregman et al. 2015). Indeed, omnivores play an important role in dampening potential trophic cascades (Bruno and O'Connor 2005) and would be expected to have a greater potential of shortterm adaptive response to changes in habitat degradation, whereas specialist species would be more vulnerable (Letourneur et al. 2017). However, species-level analyses may, therefore, mask individual differences in dietary variation and limit the ability to identify more complex energy flows and trophodynamics within a specific study area or differences in species' ecological roles. So, determining the degree of trophic plasticity within species will help understand how they may cope with environmental change (Cybulski et al. 2022). The more deeply the trophic structure of the communities will be identified, the best the consequences of reef modifications on food chain characteristics, stability, and resilience will be understood.

Local and global pressures are leading to substantial benthic alterations in coral reefs (De'ath et al. 2012). For example, the primary impacts of ocean acidification include reductions in structural complexity, skeleton density and coral recruitment, as well as increases in bioeroders (Fabricius et al. 2017). Current habitat degradation and extensive coral mortality suggest that shifts to algal- and/or rubble-dominated states may be more prevalent in a future coral reefs system (Wolff et al. 2018). Habitat degradation is thought to be a major driver of trophic structure of ecosystems (Álvarez-Filip et al. 2013), and, for example, the generation of rubble beds can have lasting effects on structural habitat complexity, species interactions, food webs, and reef communities (Wolfe et al. 2021 and references therein). Though considered as seemingly barren, featureless habitats, rubble beds actually form complex microhabitats that can host a great density and diversity of predominantly cryptic life (Enochs and Manzello 2012); a suite of taxa from microbes and biofilms, sessile and encrusting organisms, motile cryptofauna, and cryptobenthic or juvenile fishes. Despite their rising prevalence in the coral reef benthos, less is known about the biology and ecology of rubble beds, and empirical data on direct transfers of biomass and energy from the cryptobenthos to higher-order fishes are scarce (Wolfe et al. 2020). Yet, these data are required to more holistically parameterize and predict how bottom-up processes may enhance the system productivity as reefs degrade. Besides, rubble generation sustaining or even enhancing a cryptic biodiversity initially depends on framework production by corals (Wolfe et al. 2021). Thus, the potential benefits of reef erosion on rubble-dwelling taxa and ecological functioning may be impaired over time, as the production of corals-and by extension potential for rubble generationdeclines (Enochs and Manzello 2012). All these key ecological points require greater attention with the integration of more uniform and standardized trophic approaches to define and characterize degraded habitats and their associated community to improve the ability to monitor, predict, and manage these ecosystems into the future (Wolfe et al. 2021).

1.2.2 Next Steps in Means and Actions

1.2.2.1 Method Enhancements and Innovative Techniques

In the field of biochemical tracer (SIA, CSIA, FA, etc.), generating more data across a wider range of sources to get suitable baselines is a future priority. Also, lowering costs and increasing laboratory availability are necessary to combine approaches and answer macroevolutionary questions (Twining et al. 2020 and included references). By default, marine food web studies should employ a tri-isotope approach at least, this way additional examples of threedimensional SIBER that explore cross-guild relationships should come out (Cybulski et al. 2022). However, more research into the effect of tissue lipid levels on S³⁴S is sorely needed. Also, 70% of coral reef food web SIA studies focus solely on a single tissue type, mostly muscles (Skinner et al. 2022); although measuring stable isotope ratios across multiple consumer tissues can provide important information about the temporal dynamics of resource use, other tissues like liver or gonads are still less often utilized. Also, studies are beginning to perform SIA on fish eye lenses allowing reconstruction of an individual's trophic and habitat histories (Bell-Tilcock et al. 2021). Finally, hydrogen isotope (2H) values have demonstrated a typically larger isotopic separation between diet sources and consumers than the more traditional C and N isotopes (e.g., 40% vs. 2% between aquatic and terrestrial plants), because of the greater relative mass differences associated with such a light isotope (Macko et al. 1983). Ecological research on stable hydrogen isotope ratios $(\delta^2 H \text{ or } \delta D)$ of fatty acids is still in its infancy, so future studies need to address basic questions (Twining et al. 2020), including the spatiotemporal variability of different sources, the trophic discrimination from one trophic level to the next, and the analytical limitations. Also, must be taken into account changes in hydrogen isotopes of environmental waters that can consequently affect $\delta^2 H$ values in consumers, including the compound-specific level.

Robust application of the different biomarkers faces the same difficulties, with a lack of information concerning trophic discrimination and most studies limited to qualitative applications. For example, with the FA, researchers have only superficial acknowledgment of the uncertainty associated with the trophic transfer and storage in consumers of these bioactive molecules with diverse structures and functions (Iverson 2009), and these biotracers are rarely used to determine predator–prey interactions which form the basis of ecosystem models (Galloway and Budge 2020 and

included references). Yet, when genetic analyses are paired with empirical feeding studies, it is possible to link demonstrated synthesis of particular molecules, including fatty acids, with upregulation of specific genes (Kabeya et al. 2018). So, accounting for lipid trophic modification in consumers through project-specific feeding trials or by measurement and estimation of general dietary "calibration coefficients' is critical for fatty acid biomarker applications, especially quantitative ones (Jardine et al. 2020). Besides, despite a dazzling contribution in recent years, even omics methods cannot fully resolve the complex nature of some sources, for example, DOM, particularly the labile fraction within the low-molecular-weight component (i.e., metabolites; Wegley Kelly et al. 2022). It is likely due to both the limited representation of marine metabolites in current libraries and data quality that is compromised by sample complexity. Furthermore, measuring ecologically relevant changes in the concentrations of specific compounds often exceeds instrument precision (Fiore et al. 2017). Therefore, progress in both hardware advances of high-resolution tandem mass spectrometers and computational tools are still needed to semiquantitatively detect and characterize rare and diverse compounds (e.g., Petras et al. 2017; Ernst et al. 2019; Nothias et al. 2020).

As well, several cutting-edge methods are not yet widely used in ecological studies, but hold the potential to address some of the limitations of current isotopic techniques. Then, intramolecular isotope pattern studies are emerging as another promising tool to contribute to the development of new techniques using CSIA to study trophic ecology. Within a molecule's isotopic "fine structure," isotopomers are similar in isotopic composition but differ in the position of isotopes within the molecule and are preferentially used to investigate consumers' metabolic pathways by revealing enzyme activities and the nature of reordering reactions (Wiechert et al. 2013). Isotopologues, as molecules that differ in their isotope composition and profiles, offer more information on carbon fluxes and dietary routing of metabolites (Postle and Hunt 2009). However, although they offer finer-scale resolutions than CSIA for either δ^{13} C or δ^{2} H, isotopomer and isotopologue labeling studies have yet to be applied in studies of marine trophic ecology (Twining et al. 2020).

1.2.2.2 Beyond the Prism of Trophic Ecology

The use of biochemical tracers requires bridging three distinct fields, that is, ecology, physiology, and chemistry. One fundamental limitation in the field at this point is that the experts may not understand the nuances of the other disciplines, therefore the path forward will involve interdisciplinary collaboration (Galloway and Budge 2020; Robinson et al. 2024). Indeed, there is the need to break traditional barriers across disciplines (e.g., biochemistry, microbiology,

and ecology) and subdisciplines (e.g., limnology, ornithology, and soil ecology) in order to better understand trophic interactions and metabolism at the scale of whole food webs. Also, the need to cross new methodological frontiers, such as routinely combining empirical ecophysiological studies with food web analyses, to achieve deeper insight in how dietary tracers move through consumers, within food webs and across complex ecosystems (Twining et al. 2020). Thus, determining many physiological process and drivers of consumer trophic ecology represents an area ripe for further investigation (e.g., ingestion vs. excretion, thermal regulation, metabolic rates). Besides, despite a decline in interest in this discipline, taxonomy is still essential, and will be even more in future, to acknowledge and characterize ongoing massive changing in community composition. New feeding experimental works on the uptake and transfer in individual organisms are also required for the development and refinement of biomarker models that can accurately estimate animal diets, and to advance the field and make meaningful use of these tools at the scale of populations or ecosystems (Galloway and Budge 2020). Developments in modeling will definitely require acquisition of more and recent data, the use of multimodel approaches, and could rapidly evolve shortly thanks to progress in the mathematics of algorithms and the contributions of artificial intelligence (Xu et al. 2021).

Trophic ecology can offer improvements and solutions to problems that hamper coral restoration, and empirically testing methods of incorporating trophic interactions in restoration designs to assess their costs, effectiveness, and utility under different scenarios is an important priority (Ladd and Shantz 2020). Yet, despite rapidly growing interest, only 15% of restoration publications considered trophic interactions, highlighting a clear mismatch between the fundamental role of trophic ecology on coral reefs and its consideration in restoration efforts. So, the dire future of the planet's coral reefs will require the best working scientific collaborations to resolve the problems mentioned above.

References

Álvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R (2013) Shifts in coral assemblage composition do not ensure persistence of reef functionality. Sci Rep 3:1–5

Ani CJ, Smithers SG, Lewis S, Baird M, Robson B (2023) eReefs modelling suggests *Trichodesmium* may be a major nitrogen source in the Great Barrier Reef. Estuar Coast Shelf Sci 285:108306

Bell JJ, Rovellini A, Davy SK, Taylor MW, Fulton EA, Dunn MR, Bennett HM, Kandler NM, Luter HM, Webster NS (2018) Climate change alterations to ecosystem dominance: how might spongedominated reefs function? Ecology 99(9):1920–1931

Bell-Tilcock M, Jeffres CA, Rypel AL, Sommer TR, Katz JVE, Whitman G, Johnson RC (2021) Advancing diet reconstruction in fish eye lenses. Methods Ecol Evol 12:449–457

Bonnet S, Berthelot H, Turk-Kubo K, Fawcett S, Rahav E, L'Helguen S, Berman-Frank I (2016) Dynamics of N² fixation and fate of

- diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia). Biogeosciences 13:2653–2673
- Bonnet S, Caffin M, Berthelot H, Moutin T (2017) Hot spot of N_2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N_2 fixation and denitrification. Proc Natl Acad Sci USA 114:E2800–E2801
- Bonsdorff E (2021) Eutrophication: Early warning signals, ecosystem-level and societal responses, and ways forward. Ambio 50(4):753–758
- Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 17(8):445–454
- Bregman TP, Lees AC, Seddon N, MacGregor HE, Darski B, Aleixo A, Bonsall MB, Tobias JA (2015) Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96(10):2692–2704
- Briand MJ, Bonnet X, Goiran C, Guillou G, Letourneur Y (2015) Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ¹³C and δ¹⁵N). PLoS One 10:e0131555
- Briand MJ, Bonnet X, Guillou G, Letourneur Y (2016) Complex food webs in highly diversified coral reefs: Insights from $\delta^{13}C$ and $\delta^{15}N$ stable isotopes. Food Webs 8:12–22
- Brodie JE, Kroon F, Schaffelke B, Wolanski E, Lewis S, Devlin M, Bohnet I, Bainbridge Z, Waterhouse J, Davis A (2012) Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar Pollut Bull 65(4–9):81–100
- Bruno JF, O'Connor MI (2005) Cascading effects of predator diversity and omnivory in a marine food web. Ecol Lett 8:1048–1056
- Casey JM, Meyer CP, Morat F, Brandl SJ, Planes S, Parravicini V (2019) Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol Evol 10:1157–1170
- Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol modell 61(3–4):169–185
- Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Modell 172(2–4):109–139
- Christensen V, Coll M, Steenbeek J, Buszowski J, Chagaris D, Walters CJ (2014) Representing variable habitat quality in a spatial food web model. Ecosystems 17:1397–1412
- Crossman DJ, Choat HJ, Clements KD, Hardy T, McConochie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46(7):1596–1605
- Cummings DO, Booth DJ, Lee RW, Simpson SJ, Pile AJ (2010) Ontogenetic diet shifts in the reef fish *Pseudanthias rubrizonatus* from isolated populations on the North-West Shelf of Australia. Mar Ecol Progr Ser 419:211–222
- Cybulski JD, Skinner C, Wan Z, Wong CKM, Toonen RJ, Gaither MR, Soong K, Wyatt ASJ, Baker DM (2022) Improving stable isotope assessments of inter- and intra-species variation in coral reef fish trophic strategies. Ecol Evol 12(9):e9221
- D'Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93
- Da Silveira EL, Semmar N, Cartes JE, Tuset VM, Lombarte A, Ballester ELC, Vaz-dos-Santos AM (2020) Methods for trophic ecology assessment in fishes: a critical review of stomach analyses. Rev Fish Sci Aquac 28:71–106
- Dalsgaard J, St. John M, Kattner G, Muller-Navarra D, Hagen W (2003)
 Fatty acid trophic markers in the pelagic marine environment. Adv
 Mar Biol 46:225–340
- De Goeij JM, Van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, De Goeij AFPM, Admiraal W (2013) Surviving in a marine des-

- ert: the sponge loop retains resources within coral reefs. Science 342(6154):108-110
- de Lira SMA, de Teixeira IÁ, de Lima CDM, de Santos GS, Leitão SN, Schwamborn R (2014) Spatial and nycthemeral distribution of the zooneuston off Fernando de Noronha, Brazil. Braz J Oceanogr 62:35–45
- De'ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999
- Delesalle B, Pichon M, Frankignoulle M, Gattuso JP (1993) Effects of a cyclone on coral reef phytoplankton biomass, primary production and composition (Moorea Island, French Polynesia). J Plankton Res 15(12):1413–1423
- Devlin M, Waterhouse J, Brodie J (2001) Community and connectivity: summary of a community-based monitoring program set up to assess the movement of nutrients and sediments into the Great Barrier Reef during high flow events. Water Sci Technol 43(9):121–131
- Dromard CR, Bouchon-Navaro Y, Cordonnier S, Fontaine MF, Verlaque M, Harmelin-Vivien M, Bouchon C (2013) Resource use of two damselfishes, *Stegastes planifrons* and *Stegastes adustus*, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J Exp Mar Biol Ecol 440:116–125
- Dromard CR, Bouchon-Navaro Y, Harmelin-Vivien M, Bouchon C (2017) The nutritional quality of non-calcified macroalgae in Guadeloupe (Lesser Antilles) evaluated by their biochemical composition. Gulf Caribb Res 28(1):GCFI1–GCFI6
- Duprey NN, Yasuhara M, Baker DM (2016) Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Glob Chang Biol 22:3550–3565
- Enochs IC, Manzello DP (2012) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4:94–104
- Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias LF, Wandy J, Chen C, Wang M, Rogers S, Marnix MH, Dorrestein PC, Van Der Hooft JJ (2019) MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9(7):144
- Fabricius KE, Cooper TF, Humphrey C, Uthicke S, De'ath G, Davidson J, LeGrand H, Thompson A, Schaffelke B (2012) A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef. Mar Pollut Bull 65(4–9):320–332
- Fabricius KE, Noonan SHC, Abrego D, Harrington L, De'ath G (2017) Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proc R Soc B: Biol Sci 284(1862):20171536
- Fan L, Liu M, Simister R, Webster NS, Thomas T (2013) Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J 7(5):991–1002
- Fey P, Parravicini V, Lebreton B, Meziane T, Galzin R, Zubia M, Bănaru D, Letourneur Y (2020) Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar Biol 167:1–13
- Fey P, Parravicini V, Bănaru D, Dierking J, Galzin R, Lebreton B, Meziane T, Polunin NVC, Zubia M, Letourneur Y (2021a) Multitrophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web. Sci Rep 11:20950
- Fey P, Letourneur Y, Bonnabel S (2021b) The α-minimum convex polygon as a relevant tool for isotopic niche statistics. Ecol Indic 130·108048
- Fiore CL, Freeman CJ, Kujawinski EB (2017) Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter. Peer J 5:e2870
- Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol and Syst 19:207–233

- Galloway AWE, Budge SM (2020) The critical importance of experimentation in biomarker-based trophic ecology. Philos Trans R Soc B: Biol Sci 375:20190638
- Gaylord B, Barclay KM, Jellison BM, Jurgens LJ, Ninokawa AT, Rivest EB, Leighton LR (2019) Ocean change within shoreline communities: from biomechanics to behaviour and beyond. Conserv Physiol 7:coz077
- Glynn PW, Colley SB, Guzman HM, Enochs IC, Cortés J, Maté JL, Feingold JS (2011) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and the Galápagos Islands (Ecuador). VI. Agariciidae, *Pavona clavus*. Mar Biol 158:1601–1617
- Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C (2011) Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS One 6:1–10
- Gray C, Baird DJ, Baumgartner S, Jacob U, Jenkins GB, O'Gorman EJ, Lu X, Ma A, Pocock MJO, Schuwirth N (2014) Ecological networks: the missing links in biomonitoring science. J Appl Ecol 51:1444e1449
- Grüss A, Schirripa MJ, Chagaris D, Drexler M, Simons J, Verley P, Shin YJ, Karnauskas M, Oliveros-Ramos R, Ainsworth CH (2015) Evaluation of the trophic structure of the West Florida Shelf in the 2000s using the ecosystem model OSMOSE. J Mar Syst 144:30–47
- Guan Y, Hohn S, Wild C, Merico A (2020) Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob Chang Biol 26:5646–5660
- Haas AF, Nelson CE, Rohwer F, Wegley Kelly L, Quistad SD, Carlson CA, Leichter JJ, Hatay M, Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. Peer J 1:e108
- Harmelin-Vivien ML (1981) Trophic relationships of reef fishes in Tulear (Madagascar). Oceanol Acta 4(3):365–374
- Harmelin-Vivien ML (1994) The effects of storms and cyclones on coral reefs: a review. J Coast Res Special Issues 12:211–231
- Harmelin-Vivien ML (2002) Energetics and fish diversity on coral reefs. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Acad Press, San Diego, pp 265–274
- Hempson TN, Graham NAJ, McNeil MA, Bodin N, Wilson SK (2018) Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct Ecol 32(3):820–830
- Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328
- Hoey A, Howells E, Johansen J, Hobbs JP, Messmer V, McCowan D, Wilson S, Pratchett M (2016) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12
- Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG,
 Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR,
 Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau
 S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin
 CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS,
 Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough
 JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam
 MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T,
 Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL,
 Wilson SK (2017) Global warming and recurrent mass bleaching of
 corals. Nature 543(7645):373–377
- Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496
- Hyslop EJ (1980) Stomach contents analysis a review of methods and their application. J Fish Biol 17(4):411–429
- Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Dordrecht (the Netherlands). Springer, pp 281–307

- Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74(2):211–235
- Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER e stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595e602
- Jardine TD, Galloway AWE, Kainz MJ (2020) Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philos Trans R Soc B 375:20190639
- Johnson C, Klumpp D, Field J, Bradbury R (1995) Carbon flux on coral reefs: effects of large shifts in community structure. Mar Ecol Progr Ser 126:123–143
- Jordano P (2016) Chasing Ecological Interactions. PLoS Biol 14:e1002559
- Kabeya N, Fonseca MM, Ferrier DEK, Navarro JC, Bay LK, Francis DS, Tocher DR, Castro LFC, Monroig Ó (2018) Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci Adv 4:eaar6849
- Kayoda T, Osada Y, Takimoto G (2012) IsoWeb: A Bayesian isotope mixing model for diet analysis of the whole food web. PLoS One 7:e41057
- Kido Soule MC, Longnecker K, Johnson WM, Kujawinski EB (2015) Environmental metabolomics: analytical strategies. Mar Chem 177:1–62
- Kooijman S (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, Cambridge
- Kossin JP (2018) A global slowdown of tropical-cyclone translation speed. Nature 558(7708):104–107
- Kroeker KJ, Sanford E (2022) Ecological leverage points: species interactions amplify the physiological effects of global environmental change in the ocean. Ann Rev Mar Sc 14:75–103
- Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nut 11(2):103–122
- Ladd MC, Shantz AA (2020) Trophic interactions in coral reef restoration: a review. Food Webs 24:e00149
- Lesser MP (2013) Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things? Coral Reefs 32(1):25–33
- Letourneur Y, Lison de Loma T, Richard P, Harmelin-Vivien ML, Cresson P, Banaru D, Fontaine MF, Gref T, Planes S (2013) Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ¹⁵N and δ¹³C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32:1091–1102
- Letourneur Y, Briand MJ, Graham NAJ (2017) Coral reef degradation alters the isotopic niche of reef fishes. Mar Biol 164:12
- Letourneur Y, Fey P, Dierking J, Galzin R, Parravicini V (2024) Challenging trophic position assessments in complex ecosystems: Calculation method, choice of baseline, trophic enrichment factors, season and feeding guild do matter: a case study from Marquesas Islands coral reefs. Ecol Evol 14:e11620
- Liénart C, Savoye N, David V, Ramond P, Rodriguez Tressa P, Hanquiez V, Marieu V, Aubert F, Aubin S, Bichon S, Boinet C, Bourasseau L, Bozec Y, Bréret M, Breton E, Caparros J, Cariou J, Claquin P, Conan P, Corre AM, Costes L, Crouvoisier M, Del Amo Y, Derriennic H, Dindinaud F, Duran R, Durozier M, Devesa J, Ferreira S, Feunteun E, Garcia N, Geslin S, Grossteffan E, Gueux A, Guillaudeau J, Guillou G, Jolly O, Lachaussée N, Lafont M, Lagadec V, Lamoureux J, Lauga B, Lebreton B, Lecuyer E, Lehodey JP, Leroux C, L'Helguenm S, Mac E, Maria E, Mousseau L, Nowaczyk A, Pineau P, Petit F, Pujo-Pay M, Raimbault P, Rimmelin-Maury P, Rouaud V, Sauriaud PG, Sultan E, Susperregui E (2018) Dynamics of particulate organic matter composition in coastal systems: forcing of spatio-temporal variability at multi-systems scale. Progr Oceanogr 162:271–289

- Luo YW, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, Bonnet S, Boström KH, Böttjer D, Capone DG, Carpenter EJ, Chen YL, Church MJ, Dore JE, Falcón LI, Fernández A, Foster RA, Furuya K, Gómez F, Gundersen K, Hynes AM, Karl DM, Kitajima S, Langlois RJ, LaRoche J, Letelier RM, Marañón E, McGillicuddy DJ Jr, Moisander PH, Moore CM, Mouriño-Carballido B, Mulholland MR, Needoba JA, Orcutt KM, Poulton AJ, Rahav E, Raimbault P, Rees AP, Riemann L, Shiozaki T, Subramaniam A, Tyrrell T, Turk-Kubo KA, Varela M, Villareal TA, Webb EA, White AE, Wu J, Zehr JP (2012) Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst Sci Data 4:47–73
- Macko SA, Estep ML, Lee WY (1983) Stable hydrogen isotope analysis of food webs on laboratory and field populations of marine amphipods. J Exp Mar Biol Ecol 72:243–249
- Maggioni F, Bell JJ, Pujo-Pay M, Shaffer M, Cerrano C, Lemonnier H, Letourneur Y, Rodolfo-Metalpa R (2023) Sponge organic matter recycling: Reduced detritus production under extreme environmental conditions. Mar Pollut Bull 190:114869
- Matley JK, Maes GE, Devloo-Delva F, Huerlimann R, Chua G, Tobin AJ, Fisk AT, Simpfendorfer CA, Heupel MR (2018) Integrating complementary methods to improve diet analysis in fishery-targeted species. Ecol Evol 8(18):9503–9515
- McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378–390
- McMahon KW, Thorrold SR, Houghton LA, Berumen ML (2016) Tracing carbon flow through coral reef food webs using a compound specific stable isotope approach. Oecologia 180:809–821
- McMurray SE, Johnson ZI, Hunt DE, Pawlik JR, Finelli CM (2016) Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol Oceanogr 61(4):1271–1286
- Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Grosso O, Lambert C, Houlbrèque F (2019) Bleaching forces coral's heterotrophy on diazotrophs and *Synechococcus*. ISME J. 13:2882–2886
- Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, Lambert C, Rodolfo-Metalpa R, Voolstra CR, Houlbrèque F (2021) Microbes support enhanced nitrogen requirements of coral holobionts in a high CO₂ environment. Mol Ecol 30:5888–5899
- Meunier V, Bonnet S, Camps M, Benavides M, Dubosc J, Rodolfo-Metalpa R, Houlbrèque F (2022) Ingestion of diazotrophs makes corals more resistant to heat stress. Biomolecules 12:537
- Michener RH, Kaufman L (2007) Stable isotope ratios as tracers in marine food webs: an update. Stable Isot Ecol Environ Sci 2:238–282
- Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P (2018) Diet tracing in ecology: method comparison and selection. Methods Ecol Evol 9(2):278–291
- Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard PM, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Kang KB, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Martin CH, McCall LI, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O, Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J, Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der Hooft JJJ, Vargas F, Weldon KC, Witting M, Yang H, Zhang Z, Zubeil F, Kohlbacher O, Böcker S, Alexandrov T, Bandeira N, Wang M, Dorrestein PC (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17(9):905–908
- Paine RT (1992) Food-web analysis through field measurement of per capita interaction strength. Nature 355:73–75
- Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G,

- Warner RR, Jackson JB (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301(5635):955–958
- Parravicini V, Casey JM, Schiettekatte NMD, Brandl SJ, Pozas-Schacre C, Carlot J, Edgar GJ, Graham NAJ, Harmelin-Vivien M, Kulbicki M, Strona G, Stuart-Smith RD (2020) Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol 18:e3000702
- Patti GJ, Yanes O, Siuzdak G (2012) Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269
- Pawlik JR, McMurray SE (2020) The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann Rev Mar Sci 12:315–337
- Petras D, Koester I, Da Silva R, Stephens BM, Haas AF, Nelson CE, Wegley Kelly L, Aluwihare LI, Dorrestein PC (2017) High-resolution liquid chromatography tandem mass spectrometry enables large scale molecular characterization of dissolved organic matter. Front Mar Sci 4:405
- Polovina JJ (1984) Model of a coral reef ecosystem: I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3:1–11
- Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–710
- Postle AD, Hunt AN (2009) Dynamic lipidomics with stable isotope labelling. J Chromatogr B 877:2716–2721
- Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C (2018) Trophic position, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol 9:1592–1599
- Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2017) Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct Ecol 31(3):778–789
- Robinson JP, Benkwitt CE, Maire E, Morais R, Schiettekatte NM, Skinner C, Brandl SJ (2024) Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol Evol 39(5):467–478
- Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791
- Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA, Bourne DG, Thompson CC, Thompson FL (2017) Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 41(4):575–595
- Skinner C, Mill AC, Fox MD, Newman SP, Zhu Y, Kuhl A, Polunin NVC (2021) Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci Adv 7:eabf3792
- Skinner C, Pei YD, Morimoto N, Miyajima T, Wyatt ASJ (2022) Stable isotopes elucidate body-size and seasonal fluctuations in the feeding strategies of planktivorous fishes across a semi-enclosed tropical embayment. Front Ecol Evol 10:942968
- Somero GN, Lockwood BL, Tomanek L (2017) Biochemical adaptation: response to environmental challenges from life's origins to the Anthropocene. Sinauer Ass Inc Publ, Sunderland
- Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. Peer J 6:e5096
- Tamelander T, Kivimäe C, Bellerby RGJ, Renaud PE, Kristiansen S (2009) Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton. Hydrobiol 630:63–73
- Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Ann Rev Ecol Evol Syst 45:471–493
- Twining CW, Taipale SJ, Ruess L, Bec A, Martin-Creuzburg D, Kainz MJ (2020) Stable isotopes of fatty acids: current and future perspectives for advancing trophic ecology. Philos Trans R Soc B 375:20190641
- Voss JD, Richardson LL (2006) Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25(4):569–576

- Walters WJ, Christensen V (2018) Ecotracer: analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model. J Environ Radioact 181:118–127
- Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish 7(2):139
- Walters C, Pauly D, Christensen V (1999) Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2:539–554
- Wegley Kelly L, Nelson CE, Petras D, Koester I, Quinlan ZA, Arts MG, Nothiasc LF, Comstockg J, Whitee BM, Hopmansf EC, van Duylf FC, Carlsong CA, Aluwiharea LI, Dorresteinc PC, Haas AF (2022) Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc Nationl Acad Sci 119(5):e2110283119
- Wiechert W, Nöh K, Weitzel M (2013) Metabolic isotopomer labeling systems. Part III: Path tracing. Math Biosci 244:1–12
- Wilkins KW, Rosa-Marín A, Cziesielski M, Hughes H, Love C, Nowakowski C (2021) Short-and long-term visions for protecting coral reefs. Limnol Oceanogr Bull 30(1):13–15
- Wolfe K, Anthony K, Babcock R, Bay L, Bourne D, Burrows D, Byrne M, Deaker D, Diaz-Pulido G, Frade P, Gonzalez-Rivero M, Hoey A, Hoogenboom M, McCormick M, Ortiz JC, Razak T, Richardson A, Roff G, Sheppard-Brennand H, Stella J, Thompson A, Watson SA, Webster N, Audas D, Beeden R, Carver J, Cowlishaw M, Dyer M, Groves P, Horne D, Thiault L, Vains J, Wachenfeld D, Weekers D, Williams G, Mumby PJ (2020) Priority species to support the functional integrity of coral reefs. Oceanogr Mar Biol, Annu Rev 58:179–318

- Wolfe K, Kenyon TM, Mumby PJ (2021) The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40:1769–1806
- Wolff NH, Mumby PJ, Devlin M, Anthony KRN (2018) Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob Change Biol 24:1978–1991
- Wyatt ASJ, Waite AM, Humphries S (2010) Variability in isotope discrimination factors in coral reef fishes: Implications for diet and food web reconstruction. PLoS One 5:e13682
- Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2013) Particulate nutrient fluxes over a fringing coral reef: source–sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58:409–427
- Wyatt ASJ, Matsumoto R, Chikaraishi Y, Miyairi Y, Yokoyama Y, Sato K, Ohkouchi N, Nagata T (2019) Enhancing insights into foraging specialization in the world's largest fish using a multi-tissue, multi-isotope approach. Ecol Monogr 89:e01339
- Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J, Hua K, Su W, Wu J, Xu H, Han Y, Fu C, Yin Z, Liu M, Roepman R, Dietmann S, Virta M, Kengara F, Zhang Z, Zhang L, Zhao T, Dai J, Yang J, Lan L, Luo M, Liu Z, An T, Zhang B, He X, Cong S, Liu X, Zhang W, Lewis JP, Tiedje JM, Wang Q, An Z, Wang F, Zhang L, Huang T, Lu C, Cai Z, Wang F, Zhang J (2021) Artificial intelligence: a powerful paradigm for scientific research. Innovation 2(4):100179
- Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, Welsh R, Correa AMS, Lemoine NP, Rosales S, Fuchs C, Maynard JA, Thurber RV (2016) Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 7(May):1–12